Loading…
Evaluation of amines for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust
With a view to developing onboard generation of selective reductants for NOx removal from diesel engine exhaust we compared the performance of a primary, secondary and tertiary amine to NH3 using a typical mini core NH3-SCR catalyst. Primary amines with short hydrocarbon chains, e.g. CH3NH2 (maximum...
Saved in:
Published in: | Fuel (Guildford) 2006-09, Vol.85 (12-13), p.1772-1780 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With a view to developing onboard generation of selective reductants for NOx removal from diesel engine exhaust we compared the performance of a primary, secondary and tertiary amine to NH3 using a typical mini core NH3-SCR catalyst. Primary amines with short hydrocarbon chains, e.g. CH3NH2 (maximum NOx conversion, 50%) approached the NOx conversion obtained using NH3 (maximum NOx conversion, 70%). Increasing the amine to NOx ratio greater than 1 results in NOx conversions closer to those of NH3 (maximum NOx conversion increased to 60%). Secondary and tertiary amines had smaller NOx conversions as a function of temperature and the drop in NO and NOx conversion decreased with increasing amine hydrogen substitution. Also, the maximum NOx conversion for each reductant tends to move to a lower temperature as the degree of substitution increases. Unlike NH3, the amines can react in the gas phase at temperatures within the range of diesel engine exhaust. Due to this gas phase reactivity the NOx conversions measured using the mini core SCR catalyst also contain a gas phase conversion component. Gas phase conversions were investigated by replacing the mini core SCR catalyst with an equivalent length of quartz beads. Subtraction of the two results highlighted the differences between the mini core catalytic and gas phase conversions measured in this manner over the temperature range investigated. These differential NOx conversions for the three amines had maxima at about 375°C. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2006.01.024 |