Loading…

Production of heat shock proteins, cytokines, and nitric oxide in toxic stress

Expression of heat shock proteins Hsp27, Hsp90, and Hsp70 and production of tumor necrosis factors (TNF-alpha, TNF-beta), interferon-gamma (IFN-gamma), interleukin-2, -3, -6, and nitric oxide (NO) were studied under conditions of acute and chronic intoxication of animals with lipopolysaccharides. In...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2006-04, Vol.71 (4), p.376-383
Main Authors: Novoselova, E G, Glushkova, O V, Cherenkov, D A, Parfenyuk, S B, Novoselova, T V, Lunin, S M, Khrenov, M O, Guzhova, I V, Margulis, B A, Fesenko, E E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Expression of heat shock proteins Hsp27, Hsp90, and Hsp70 and production of tumor necrosis factors (TNF-alpha, TNF-beta), interferon-gamma (IFN-gamma), interleukin-2, -3, -6, and nitric oxide (NO) were studied under conditions of acute and chronic intoxication of animals with lipopolysaccharides. Injection of endotoxin increased expression of heat shock proteins Hsp70 and Hsp90-alpha in mouse cells. Acute toxic stress also provoked a sharp increase in the production of TNF-alpha, TNF-beta, and NO in mouse cells. The production of other cytokines (interleukins and IFN-gamma) was changed insignificantly. In the model of chronic toxic stress, changes in the production of Hsp70, Hsp90, TNF, and NO were followed during 11 days after the beginning of the toxin injections. The expression of Hsp70 and Hsp90 in acute stress was significantly higher than at the final stage of the chronic exposure. The changes in the TNF and NO productions, on one hand, and the production of heat shock proteins, on the other hand, were synchronous. The findings indicate that repeated injections of increasing endotoxin doses result in a decreased ability of the body cells to respond to stress by overproduction of heat shock proteins, TNF, and NO.
ISSN:0006-2979
1608-3040
0320-9725
DOI:10.1134/S0006297906040055