Loading…

Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis

The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark‐field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow‐orange due to the plasmonic coupling effect. Anal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biophotonics 2016-07, Vol.9 (7), p.738-749
Main Authors: Wang, Sheng-Hann, Lee, Chia-Wei, Tseng, Fan-Gang, Liang, Kuo-Kan, Wei, Pei-Kuen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93
cites cdi_FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93
container_end_page 749
container_issue 7
container_start_page 738
container_title Journal of biophotonics
container_volume 9
creator Wang, Sheng-Hann
Lee, Chia-Wei
Tseng, Fan-Gang
Liang, Kuo-Kan
Wei, Pei-Kuen
description The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark‐field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow‐orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark‐field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions. The scattering color of gold nanoparticles (Au NPs) are dependent on their aggregated number. Within the endocytosis process, the endosomes contained Au NPs inside would undergo the fission and fusion. Under the dark field illumination, the chromatic analysis of Au NP clusters can be used to refine the kinetics and number of influx and efflux of endosomes with different cell lines.
doi_str_mv 10.1002/jbio.201500182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2059576015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808734935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93</originalsourceid><addsrcrecordid>eNqNkr1v1DAchi0EouVgZUSWWFhyOLEdxyN3Kv1QRZE4BJvlrxQfvji1k9KM_Oc4XDkhljLFsZ_fI_l9DcDLEi1LhKq3W-XCskIlRahsqkfguGxqUqCaNI8Pa_z1CDxLaYtQjTDFT8FRxTnBnNBj8PPkNvhxcKGDoYXXwRvYyS70Mg5Oewu1H9NgY4Kug97duu4aaut9gmkYjbMGqgkmq2eB9NDI-L1onc2W0GdB3to5HUPSoZ-g7AzU32LYyXyU_6SfkkvPwZNW-mRf3H8X4PP7k836rLi8Oj1fv7ssNGGsKhSpiJaacVxSiZRmpUK14RJb2ljVEoXKtlWK1bgxNdOmMbrmpTWyspJazfECvNl7-xhuRpsGsXNpvovsbBiTqBDllNU5ygfRnDSluCGI_weKGoYJx7P19T_oNowxp_CbQhQxmvtZgOWemmNL0baij24n4yRKJObKxVy5OFSeB17da0e1s-aA_-k4A3wP_HDeTg_oxMXq_OpvebGfdfkV3B1mc82iZphR8eXDqfi0qdabi48rscK_ABOlyY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800507560</pqid></control><display><type>article</type><title>Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Sheng-Hann ; Lee, Chia-Wei ; Tseng, Fan-Gang ; Liang, Kuo-Kan ; Wei, Pei-Kuen</creator><creatorcontrib>Wang, Sheng-Hann ; Lee, Chia-Wei ; Tseng, Fan-Gang ; Liang, Kuo-Kan ; Wei, Pei-Kuen</creatorcontrib><description>The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark‐field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow‐orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark‐field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions. The scattering color of gold nanoparticles (Au NPs) are dependent on their aggregated number. Within the endocytosis process, the endosomes contained Au NPs inside would undergo the fission and fusion. Under the dark field illumination, the chromatic analysis of Au NP clusters can be used to refine the kinetics and number of influx and efflux of endosomes with different cell lines.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.201500182</identifier><identifier>PMID: 29943945</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>chromatic analysis ; Clusters ; dark-field image ; endocytosis ; Endosomes ; Fission ; Gold ; gold nanoparticles ; Kinetics ; Mathematical analysis ; Microscopy ; Nanoparticles ; Nanostructure ; Optical microscopy</subject><ispartof>Journal of biophotonics, 2016-07, Vol.9 (7), p.738-749</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93</citedby><cites>FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29943945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Sheng-Hann</creatorcontrib><creatorcontrib>Lee, Chia-Wei</creatorcontrib><creatorcontrib>Tseng, Fan-Gang</creatorcontrib><creatorcontrib>Liang, Kuo-Kan</creatorcontrib><creatorcontrib>Wei, Pei-Kuen</creatorcontrib><title>Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis</title><title>Journal of biophotonics</title><addtitle>J. Biophoton</addtitle><description>The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark‐field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow‐orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark‐field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions. The scattering color of gold nanoparticles (Au NPs) are dependent on their aggregated number. Within the endocytosis process, the endosomes contained Au NPs inside would undergo the fission and fusion. Under the dark field illumination, the chromatic analysis of Au NP clusters can be used to refine the kinetics and number of influx and efflux of endosomes with different cell lines.</description><subject>chromatic analysis</subject><subject>Clusters</subject><subject>dark-field image</subject><subject>endocytosis</subject><subject>Endosomes</subject><subject>Fission</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optical microscopy</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkr1v1DAchi0EouVgZUSWWFhyOLEdxyN3Kv1QRZE4BJvlrxQfvji1k9KM_Oc4XDkhljLFsZ_fI_l9DcDLEi1LhKq3W-XCskIlRahsqkfguGxqUqCaNI8Pa_z1CDxLaYtQjTDFT8FRxTnBnNBj8PPkNvhxcKGDoYXXwRvYyS70Mg5Oewu1H9NgY4Kug97duu4aaut9gmkYjbMGqgkmq2eB9NDI-L1onc2W0GdB3to5HUPSoZ-g7AzU32LYyXyU_6SfkkvPwZNW-mRf3H8X4PP7k836rLi8Oj1fv7ssNGGsKhSpiJaacVxSiZRmpUK14RJb2ljVEoXKtlWK1bgxNdOmMbrmpTWyspJazfECvNl7-xhuRpsGsXNpvovsbBiTqBDllNU5ygfRnDSluCGI_weKGoYJx7P19T_oNowxp_CbQhQxmvtZgOWemmNL0baij24n4yRKJObKxVy5OFSeB17da0e1s-aA_-k4A3wP_HDeTg_oxMXq_OpvebGfdfkV3B1mc82iZphR8eXDqfi0qdabi48rscK_ABOlyY0</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Wang, Sheng-Hann</creator><creator>Lee, Chia-Wei</creator><creator>Tseng, Fan-Gang</creator><creator>Liang, Kuo-Kan</creator><creator>Wei, Pei-Kuen</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis</title><author>Wang, Sheng-Hann ; Lee, Chia-Wei ; Tseng, Fan-Gang ; Liang, Kuo-Kan ; Wei, Pei-Kuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>chromatic analysis</topic><topic>Clusters</topic><topic>dark-field image</topic><topic>endocytosis</topic><topic>Endosomes</topic><topic>Fission</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optical microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Sheng-Hann</creatorcontrib><creatorcontrib>Lee, Chia-Wei</creatorcontrib><creatorcontrib>Tseng, Fan-Gang</creatorcontrib><creatorcontrib>Liang, Kuo-Kan</creatorcontrib><creatorcontrib>Wei, Pei-Kuen</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Sheng-Hann</au><au>Lee, Chia-Wei</au><au>Tseng, Fan-Gang</au><au>Liang, Kuo-Kan</au><au>Wei, Pei-Kuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J. Biophoton</addtitle><date>2016-07</date><risdate>2016</risdate><volume>9</volume><issue>7</issue><spage>738</spage><epage>749</epage><pages>738-749</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark‐field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow‐orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark‐field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions. The scattering color of gold nanoparticles (Au NPs) are dependent on their aggregated number. Within the endocytosis process, the endosomes contained Au NPs inside would undergo the fission and fusion. Under the dark field illumination, the chromatic analysis of Au NP clusters can be used to refine the kinetics and number of influx and efflux of endosomes with different cell lines.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>29943945</pmid><doi>10.1002/jbio.201500182</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2016-07, Vol.9 (7), p.738-749
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_2059576015
source Wiley-Blackwell Read & Publish Collection
subjects chromatic analysis
Clusters
dark-field image
endocytosis
Endosomes
Fission
Gold
gold nanoparticles
Kinetics
Mathematical analysis
Microscopy
Nanoparticles
Nanostructure
Optical microscopy
title Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20gold%20nanoparticle%20clusters%20in%20living%20cells%20studied%20by%20sectional%20dark-field%20optical%20microscopy%20and%20chromatic%20analysis&rft.jtitle=Journal%20of%20biophotonics&rft.au=Wang,%20Sheng-Hann&rft.date=2016-07&rft.volume=9&rft.issue=7&rft.spage=738&rft.epage=749&rft.pages=738-749&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.201500182&rft_dat=%3Cproquest_cross%3E1808734935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4772-b424cac79315a0bc71b06d9a3e58ebf4b01ffbb7638d67cd8dc691eda2ea5ec93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800507560&rft_id=info:pmid/29943945&rfr_iscdi=true