Loading…

Cross-Scale Analysis of Fire Regimes

Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire freq...

Full description

Saved in:
Bibliographic Details
Published in:Ecosystems (New York) 2007-08, Vol.10 (5), p.809-823
Main Authors: Falk, Donald A, Miller, Carol, McKenzie, Donald, Black, Anne E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3
cites cdi_FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3
container_end_page 823
container_issue 5
container_start_page 809
container_title Ecosystems (New York)
container_volume 10
creator Falk, Donald A
Miller, Carol
McKenzie, Donald
Black, Anne E
description Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire frequency across spatial scale, we derive the event-area (EA) relationship and the analogous interval-area (IA) relationship using historical and simulated data from low- and high-severity fire regimes. The EA and IA provide multi-scale descriptions of fire regimes, as opposed to standard metrics that may apply only at a single scale. Parameters and properties of scaling functions (intercept, slope, minimum value) are associated statistically with properties of the fire regime, such as mean fire-free intervals and fire size distributions, but are not direct mathematical transformations of them because they also reflect mechanistic drivers of fire that are non-stationary in time and space. Patterns in fire-scaling relations can be used to identify how controls on fire regimes change across spatial and temporal scales. Future research that considers fire as a cross-scale process will be directly applicable to landscape-scale fire management.
doi_str_mv 10.1007/s10021-007-9070-7
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20599848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27823722</jstor_id><sourcerecordid>27823722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWKs_wIU4iLqL3jxmkixLsSoUBGvXIc2jTJl2NGkX_fdmnKLgJjnhfPeQexC6JPBAAMRjyiclOEusQAAWR2hAOCsxVFQd_2iKleRwis5SWgGQUnI-QLfj2KaEZ9Y0vhhtTLNPdSraUEzq6It3v6zXPp2jk2Ca5C8O9xDNJ08f4xc8fXt-HY-m2HJKt9iVlQdQgRvuQbJKhSANcOqCU8ZJYRbOCksNVSVwx5RzIPPTLIIMBKxjQ3Tf537G9mvn01av62R905iNb3dJUyhV3kFm8OYfuGp3Mf8-acEYlExVKkOkh2y3YvRBf8Z6beJeE9BdabovTXeyKy3PDtHdIdikXEmIZmPr9DeoiGJSlJm76rlV2rbx16dCUiYozf517wfTarOMOWM-o0AYgCS04pR9A1zNfQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733053969</pqid></control><display><type>article</type><title>Cross-Scale Analysis of Fire Regimes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Nature</source><creator>Falk, Donald A ; Miller, Carol ; McKenzie, Donald ; Black, Anne E</creator><creatorcontrib>Falk, Donald A ; Miller, Carol ; McKenzie, Donald ; Black, Anne E</creatorcontrib><description>Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire frequency across spatial scale, we derive the event-area (EA) relationship and the analogous interval-area (IA) relationship using historical and simulated data from low- and high-severity fire regimes. The EA and IA provide multi-scale descriptions of fire regimes, as opposed to standard metrics that may apply only at a single scale. Parameters and properties of scaling functions (intercept, slope, minimum value) are associated statistically with properties of the fire regime, such as mean fire-free intervals and fire size distributions, but are not direct mathematical transformations of them because they also reflect mechanistic drivers of fire that are non-stationary in time and space. Patterns in fire-scaling relations can be used to identify how controls on fire regimes change across spatial and temporal scales. Future research that considers fire as a cross-scale process will be directly applicable to landscape-scale fire management.</description><identifier>ISSN: 1432-9840</identifier><identifier>EISSN: 1435-0629</identifier><identifier>DOI: 10.1007/s10021-007-9070-7</identifier><language>eng</language><publisher>New York, NY: New York : Springer-Verlag</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Biological and medical sciences ; case studies ; Climate change ; Climate models ; climatic factors ; cross-scale interactions ; Ecosystems ; equations ; Fire behavior ; Fire ecology ; fire frequency ; fire fuels ; fire history ; Fire regimes ; fire severity ; Forest &amp; brush fires ; Forest and land fires ; Forest ecosystems ; Forest fires ; Fundamental and applied biological sciences. Psychology ; General aspects ; landforms ; Landscapes ; mathematical models ; Phytopathology. Animal pests. Plant and forest protection ; simulation models ; spatial scales ; spatial variation ; Synecology ; temporal variation ; topography ; Weather damages. Fires ; Wildfires</subject><ispartof>Ecosystems (New York), 2007-08, Vol.10 (5), p.809-823</ispartof><rights>2007 Springer Science+Business Media, LLC</rights><rights>2007 INIST-CNRS</rights><rights>Springer Science+Business Media, LLC 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3</citedby><cites>FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27823722$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27823722$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19193875$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Falk, Donald A</creatorcontrib><creatorcontrib>Miller, Carol</creatorcontrib><creatorcontrib>McKenzie, Donald</creatorcontrib><creatorcontrib>Black, Anne E</creatorcontrib><title>Cross-Scale Analysis of Fire Regimes</title><title>Ecosystems (New York)</title><description>Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire frequency across spatial scale, we derive the event-area (EA) relationship and the analogous interval-area (IA) relationship using historical and simulated data from low- and high-severity fire regimes. The EA and IA provide multi-scale descriptions of fire regimes, as opposed to standard metrics that may apply only at a single scale. Parameters and properties of scaling functions (intercept, slope, minimum value) are associated statistically with properties of the fire regime, such as mean fire-free intervals and fire size distributions, but are not direct mathematical transformations of them because they also reflect mechanistic drivers of fire that are non-stationary in time and space. Patterns in fire-scaling relations can be used to identify how controls on fire regimes change across spatial and temporal scales. Future research that considers fire as a cross-scale process will be directly applicable to landscape-scale fire management.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>case studies</subject><subject>Climate change</subject><subject>Climate models</subject><subject>climatic factors</subject><subject>cross-scale interactions</subject><subject>Ecosystems</subject><subject>equations</subject><subject>Fire behavior</subject><subject>Fire ecology</subject><subject>fire frequency</subject><subject>fire fuels</subject><subject>fire history</subject><subject>Fire regimes</subject><subject>fire severity</subject><subject>Forest &amp; brush fires</subject><subject>Forest and land fires</subject><subject>Forest ecosystems</subject><subject>Forest fires</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>landforms</subject><subject>Landscapes</subject><subject>mathematical models</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>simulation models</subject><subject>spatial scales</subject><subject>spatial variation</subject><subject>Synecology</subject><subject>temporal variation</subject><subject>topography</subject><subject>Weather damages. Fires</subject><subject>Wildfires</subject><issn>1432-9840</issn><issn>1435-0629</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWKs_wIU4iLqL3jxmkixLsSoUBGvXIc2jTJl2NGkX_fdmnKLgJjnhfPeQexC6JPBAAMRjyiclOEusQAAWR2hAOCsxVFQd_2iKleRwis5SWgGQUnI-QLfj2KaEZ9Y0vhhtTLNPdSraUEzq6It3v6zXPp2jk2Ca5C8O9xDNJ08f4xc8fXt-HY-m2HJKt9iVlQdQgRvuQbJKhSANcOqCU8ZJYRbOCksNVSVwx5RzIPPTLIIMBKxjQ3Tf537G9mvn01av62R905iNb3dJUyhV3kFm8OYfuGp3Mf8-acEYlExVKkOkh2y3YvRBf8Z6beJeE9BdabovTXeyKy3PDtHdIdikXEmIZmPr9DeoiGJSlJm76rlV2rbx16dCUiYozf517wfTarOMOWM-o0AYgCS04pR9A1zNfQU</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Falk, Donald A</creator><creator>Miller, Carol</creator><creator>McKenzie, Donald</creator><creator>Black, Anne E</creator><general>New York : Springer-Verlag</general><general>Springer Science+Business Media</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7U6</scope></search><sort><creationdate>20070801</creationdate><title>Cross-Scale Analysis of Fire Regimes</title><author>Falk, Donald A ; Miller, Carol ; McKenzie, Donald ; Black, Anne E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>case studies</topic><topic>Climate change</topic><topic>Climate models</topic><topic>climatic factors</topic><topic>cross-scale interactions</topic><topic>Ecosystems</topic><topic>equations</topic><topic>Fire behavior</topic><topic>Fire ecology</topic><topic>fire frequency</topic><topic>fire fuels</topic><topic>fire history</topic><topic>Fire regimes</topic><topic>fire severity</topic><topic>Forest &amp; brush fires</topic><topic>Forest and land fires</topic><topic>Forest ecosystems</topic><topic>Forest fires</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>landforms</topic><topic>Landscapes</topic><topic>mathematical models</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>simulation models</topic><topic>spatial scales</topic><topic>spatial variation</topic><topic>Synecology</topic><topic>temporal variation</topic><topic>topography</topic><topic>Weather damages. Fires</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falk, Donald A</creatorcontrib><creatorcontrib>Miller, Carol</creatorcontrib><creatorcontrib>McKenzie, Donald</creatorcontrib><creatorcontrib>Black, Anne E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><jtitle>Ecosystems (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falk, Donald A</au><au>Miller, Carol</au><au>McKenzie, Donald</au><au>Black, Anne E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Scale Analysis of Fire Regimes</atitle><jtitle>Ecosystems (New York)</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>10</volume><issue>5</issue><spage>809</spage><epage>823</epage><pages>809-823</pages><issn>1432-9840</issn><eissn>1435-0629</eissn><abstract>Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire frequency across spatial scale, we derive the event-area (EA) relationship and the analogous interval-area (IA) relationship using historical and simulated data from low- and high-severity fire regimes. The EA and IA provide multi-scale descriptions of fire regimes, as opposed to standard metrics that may apply only at a single scale. Parameters and properties of scaling functions (intercept, slope, minimum value) are associated statistically with properties of the fire regime, such as mean fire-free intervals and fire size distributions, but are not direct mathematical transformations of them because they also reflect mechanistic drivers of fire that are non-stationary in time and space. Patterns in fire-scaling relations can be used to identify how controls on fire regimes change across spatial and temporal scales. Future research that considers fire as a cross-scale process will be directly applicable to landscape-scale fire management.</abstract><cop>New York, NY</cop><pub>New York : Springer-Verlag</pub><doi>10.1007/s10021-007-9070-7</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-9840
ispartof Ecosystems (New York), 2007-08, Vol.10 (5), p.809-823
issn 1432-9840
1435-0629
language eng
recordid cdi_proquest_miscellaneous_20599848
source JSTOR Archival Journals and Primary Sources Collection; Springer Nature
subjects Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
case studies
Climate change
Climate models
climatic factors
cross-scale interactions
Ecosystems
equations
Fire behavior
Fire ecology
fire frequency
fire fuels
fire history
Fire regimes
fire severity
Forest & brush fires
Forest and land fires
Forest ecosystems
Forest fires
Fundamental and applied biological sciences. Psychology
General aspects
landforms
Landscapes
mathematical models
Phytopathology. Animal pests. Plant and forest protection
simulation models
spatial scales
spatial variation
Synecology
temporal variation
topography
Weather damages. Fires
Wildfires
title Cross-Scale Analysis of Fire Regimes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Scale%20Analysis%20of%20Fire%20Regimes&rft.jtitle=Ecosystems%20(New%20York)&rft.au=Falk,%20Donald%20A&rft.date=2007-08-01&rft.volume=10&rft.issue=5&rft.spage=809&rft.epage=823&rft.pages=809-823&rft.issn=1432-9840&rft.eissn=1435-0629&rft_id=info:doi/10.1007/s10021-007-9070-7&rft_dat=%3Cjstor_proqu%3E27823722%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-d56e009f4a4e08369ff8a042dfd9ad87abdc7c2a29504d39dd08c2aabf8f10cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733053969&rft_id=info:pmid/&rft_jstor_id=27823722&rfr_iscdi=true