Loading…

Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries

Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 n...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-07, Vol.10 (28), p.23900-23909
Main Authors: Huang, Zongxiong, Qin, Xueping, Gu, Xiefang, Li, Guanzhou, Mu, Yangchang, Wang, Naiguang, Ithisuphalap, Kemakorn, Wang, Hongxia, Guo, Zaiping, Shi, Zhicong, Wu, Gang, Shao, Minhua
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 23909
container_issue 28
container_start_page 23900
container_title ACS applied materials & interfaces
container_volume 10
creator Huang, Zongxiong
Qin, Xueping
Gu, Xiefang
Li, Guanzhou
Mu, Yangchang
Wang, Naiguang
Ithisuphalap, Kemakorn
Wang, Hongxia
Guo, Zaiping
Shi, Zhicong
Wu, Gang
Shao, Minhua
description Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.
doi_str_mv 10.1021/acsami.8b06984
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060866647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060866647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83</originalsourceid><addsrcrecordid>eNo9UUlOxDAQjBBIrFfOPiKkgOM4iXOEYVgkYFgvXKKOY4ORxx68CObGH3gGv-IleDSIU5e6q6pbXVm2W-CDApPiELiHqTpgPa5bRleyjaKlNGekIqv_mNL1bNP7V4zrkuBqI_u-MuWEotsIJsQpOrHBo_s4m1kXxICsQdcqOPssTH5iZ6lzAy4o0HqOxh_SagUL2lXUQb2nLhqB6xciMDbEXngEHk0-5kmP7sQQeVBpOtaCJ1MOAfTcp4XSOnSunl_yG-ESnoLhAj2Zn8-vI-XQMYQgnBJ-O1uToL3Y-atb2ePp-GF0nl9Ozi5GR5c5ENaGvKiagYOEoekHzkhfybYkDWk55ZXERGJBMRDCGi4ZJ3WBWd2WDEvJh5KBZOVWtrf0nTn7FoUP3VR5LrQGI2z0HcF10tQ1bRJ1f0lNz-9ebXQmHdYVuFsk0i0T6f4SKX8BmiKEzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2060866647</pqid></control><display><type>article</type><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</creator><creatorcontrib>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</creatorcontrib><description>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b06984</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-07, Vol.10 (28), p.23900-23909</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4496-0057 ; 0000-0003-0885-6172 ; 0000-0003-3464-5301 ; 0000-0003-2360-7668 ; 0000-0003-0146-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Zongxiong</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Gu, Xiefang</creatorcontrib><creatorcontrib>Li, Guanzhou</creatorcontrib><creatorcontrib>Mu, Yangchang</creatorcontrib><creatorcontrib>Wang, Naiguang</creatorcontrib><creatorcontrib>Ithisuphalap, Kemakorn</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Shi, Zhicong</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UUlOxDAQjBBIrFfOPiKkgOM4iXOEYVgkYFgvXKKOY4ORxx68CObGH3gGv-IleDSIU5e6q6pbXVm2W-CDApPiELiHqTpgPa5bRleyjaKlNGekIqv_mNL1bNP7V4zrkuBqI_u-MuWEotsIJsQpOrHBo_s4m1kXxICsQdcqOPssTH5iZ6lzAy4o0HqOxh_SagUL2lXUQb2nLhqB6xciMDbEXngEHk0-5kmP7sQQeVBpOtaCJ1MOAfTcp4XSOnSunl_yG-ESnoLhAj2Zn8-vI-XQMYQgnBJ-O1uToL3Y-atb2ePp-GF0nl9Ozi5GR5c5ENaGvKiagYOEoekHzkhfybYkDWk55ZXERGJBMRDCGi4ZJ3WBWd2WDEvJh5KBZOVWtrf0nTn7FoUP3VR5LrQGI2z0HcF10tQ1bRJ1f0lNz-9ebXQmHdYVuFsk0i0T6f4SKX8BmiKEzQ</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Huang, Zongxiong</creator><creator>Qin, Xueping</creator><creator>Gu, Xiefang</creator><creator>Li, Guanzhou</creator><creator>Mu, Yangchang</creator><creator>Wang, Naiguang</creator><creator>Ithisuphalap, Kemakorn</creator><creator>Wang, Hongxia</creator><creator>Guo, Zaiping</creator><creator>Shi, Zhicong</creator><creator>Wu, Gang</creator><creator>Shao, Minhua</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0003-0885-6172</orcidid><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid><orcidid>https://orcid.org/0000-0003-2360-7668</orcidid><orcidid>https://orcid.org/0000-0003-0146-5259</orcidid></search><sort><creationdate>20180718</creationdate><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><author>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zongxiong</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Gu, Xiefang</creatorcontrib><creatorcontrib>Li, Guanzhou</creatorcontrib><creatorcontrib>Mu, Yangchang</creatorcontrib><creatorcontrib>Wang, Naiguang</creatorcontrib><creatorcontrib>Ithisuphalap, Kemakorn</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Shi, Zhicong</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zongxiong</au><au>Qin, Xueping</au><au>Gu, Xiefang</au><au>Li, Guanzhou</au><au>Mu, Yangchang</au><au>Wang, Naiguang</au><au>Ithisuphalap, Kemakorn</au><au>Wang, Hongxia</au><au>Guo, Zaiping</au><au>Shi, Zhicong</au><au>Wu, Gang</au><au>Shao, Minhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>10</volume><issue>28</issue><spage>23900</spage><epage>23909</epage><pages>23900-23909</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.8b06984</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0003-0885-6172</orcidid><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid><orcidid>https://orcid.org/0000-0003-2360-7668</orcidid><orcidid>https://orcid.org/0000-0003-0146-5259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-07, Vol.10 (28), p.23900-23909
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2060866647
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn3O4%20Quantum%20Dots%20Supported%20on%20Nitrogen-Doped%20Partially%20Exfoliated%20Multiwall%20Carbon%20Nanotubes%20as%20Oxygen%20Reduction%20Electrocatalysts%20for%20High-Performance%20Zn%E2%80%93Air%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Zongxiong&rft.date=2018-07-18&rft.volume=10&rft.issue=28&rft.spage=23900&rft.epage=23909&rft.pages=23900-23909&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b06984&rft_dat=%3Cproquest_acs_j%3E2060866647%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2060866647&rft_id=info:pmid/&rfr_iscdi=true