Loading…
Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries
Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 n...
Saved in:
Published in: | ACS applied materials & interfaces 2018-07, Vol.10 (28), p.23900-23909 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 23909 |
container_issue | 28 |
container_start_page | 23900 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Huang, Zongxiong Qin, Xueping Gu, Xiefang Li, Guanzhou Mu, Yangchang Wang, Naiguang Ithisuphalap, Kemakorn Wang, Hongxia Guo, Zaiping Shi, Zhicong Wu, Gang Shao, Minhua |
description | Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries. |
doi_str_mv | 10.1021/acsami.8b06984 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2060866647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2060866647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83</originalsourceid><addsrcrecordid>eNo9UUlOxDAQjBBIrFfOPiKkgOM4iXOEYVgkYFgvXKKOY4ORxx68CObGH3gGv-IleDSIU5e6q6pbXVm2W-CDApPiELiHqTpgPa5bRleyjaKlNGekIqv_mNL1bNP7V4zrkuBqI_u-MuWEotsIJsQpOrHBo_s4m1kXxICsQdcqOPssTH5iZ6lzAy4o0HqOxh_SagUL2lXUQb2nLhqB6xciMDbEXngEHk0-5kmP7sQQeVBpOtaCJ1MOAfTcp4XSOnSunl_yG-ESnoLhAj2Zn8-vI-XQMYQgnBJ-O1uToL3Y-atb2ePp-GF0nl9Ozi5GR5c5ENaGvKiagYOEoekHzkhfybYkDWk55ZXERGJBMRDCGi4ZJ3WBWd2WDEvJh5KBZOVWtrf0nTn7FoUP3VR5LrQGI2z0HcF10tQ1bRJ1f0lNz-9ebXQmHdYVuFsk0i0T6f4SKX8BmiKEzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2060866647</pqid></control><display><type>article</type><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</creator><creatorcontrib>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</creatorcontrib><description>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b06984</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-07, Vol.10 (28), p.23900-23909</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4496-0057 ; 0000-0003-0885-6172 ; 0000-0003-3464-5301 ; 0000-0003-2360-7668 ; 0000-0003-0146-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huang, Zongxiong</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Gu, Xiefang</creatorcontrib><creatorcontrib>Li, Guanzhou</creatorcontrib><creatorcontrib>Mu, Yangchang</creatorcontrib><creatorcontrib>Wang, Naiguang</creatorcontrib><creatorcontrib>Ithisuphalap, Kemakorn</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Shi, Zhicong</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UUlOxDAQjBBIrFfOPiKkgOM4iXOEYVgkYFgvXKKOY4ORxx68CObGH3gGv-IleDSIU5e6q6pbXVm2W-CDApPiELiHqTpgPa5bRleyjaKlNGekIqv_mNL1bNP7V4zrkuBqI_u-MuWEotsIJsQpOrHBo_s4m1kXxICsQdcqOPssTH5iZ6lzAy4o0HqOxh_SagUL2lXUQb2nLhqB6xciMDbEXngEHk0-5kmP7sQQeVBpOtaCJ1MOAfTcp4XSOnSunl_yG-ESnoLhAj2Zn8-vI-XQMYQgnBJ-O1uToL3Y-atb2ePp-GF0nl9Ozi5GR5c5ENaGvKiagYOEoekHzkhfybYkDWk55ZXERGJBMRDCGi4ZJ3WBWd2WDEvJh5KBZOVWtrf0nTn7FoUP3VR5LrQGI2z0HcF10tQ1bRJ1f0lNz-9ebXQmHdYVuFsk0i0T6f4SKX8BmiKEzQ</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Huang, Zongxiong</creator><creator>Qin, Xueping</creator><creator>Gu, Xiefang</creator><creator>Li, Guanzhou</creator><creator>Mu, Yangchang</creator><creator>Wang, Naiguang</creator><creator>Ithisuphalap, Kemakorn</creator><creator>Wang, Hongxia</creator><creator>Guo, Zaiping</creator><creator>Shi, Zhicong</creator><creator>Wu, Gang</creator><creator>Shao, Minhua</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0003-0885-6172</orcidid><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid><orcidid>https://orcid.org/0000-0003-2360-7668</orcidid><orcidid>https://orcid.org/0000-0003-0146-5259</orcidid></search><sort><creationdate>20180718</creationdate><title>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</title><author>Huang, Zongxiong ; Qin, Xueping ; Gu, Xiefang ; Li, Guanzhou ; Mu, Yangchang ; Wang, Naiguang ; Ithisuphalap, Kemakorn ; Wang, Hongxia ; Guo, Zaiping ; Shi, Zhicong ; Wu, Gang ; Shao, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zongxiong</creatorcontrib><creatorcontrib>Qin, Xueping</creatorcontrib><creatorcontrib>Gu, Xiefang</creatorcontrib><creatorcontrib>Li, Guanzhou</creatorcontrib><creatorcontrib>Mu, Yangchang</creatorcontrib><creatorcontrib>Wang, Naiguang</creatorcontrib><creatorcontrib>Ithisuphalap, Kemakorn</creatorcontrib><creatorcontrib>Wang, Hongxia</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Shi, Zhicong</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Shao, Minhua</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zongxiong</au><au>Qin, Xueping</au><au>Gu, Xiefang</au><au>Li, Guanzhou</au><au>Mu, Yangchang</au><au>Wang, Naiguang</au><au>Ithisuphalap, Kemakorn</au><au>Wang, Hongxia</au><au>Guo, Zaiping</au><au>Shi, Zhicong</au><au>Wu, Gang</au><au>Shao, Minhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>10</volume><issue>28</issue><spage>23900</spage><epage>23909</epage><pages>23900-23909</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Highly efficient and low-cost nonprecious metal electrocatalysts that favor a four-electron pathway for the oxygen reduction reaction (ORR) are essential for high-performance metal–air batteries. Herein, we show an ultrasonication-assisted synthesis method to prepare Mn3O4 quantum dots (QDs, ca. 2 nm) anchored on nitrogen-doped partially exfoliated multiwall carbon nanotubes (Mn3O4 QDs/N-p-MCNTs) as a high-performance ORR catalyst. The Mn3O4 QDs/N-p-MCNTs facilitated the four-electron pathway for the ORR and exhibited sufficient catalytic activity with an onset potential of 0.850 V (vs reversible hydrogen electrode), which is only 38 mV less positive than that of Pt/C (0.888 V). In addition, the Mn3O4 QDs/N-p-MCNTs demonstrated superior stability than Pt/C in alkaline solutions. Furthermore, a Zn–air battery using the Mn3O4 QDs/N-p-MCNTs cathode catalyst successfully generated a specific capacity of 745 mA h g–1 at 10 mA cm–2 without the loss of voltage after continuous discharging for 105 h. The superior ORR activity of Mn3O4 QDs/N-p-MCNTs can be ascribed to the homogeneous Mn3O4 QDs loaded onto the N-doped carbon skeleton and the synergistic effects of Mn3O4 QDs, nitrogen, and carbon nanotubes. The interface binding energy of −3.35 eV calculated by the first-principles density functional theory method illustrated the high stability of the QD-anchored catalyst. The most stable adsorption structure of O2, at the interface between Mn3O4 QDs and the graphene layer, had the binding energy of −1.17 eV, greatly enhancing the ORR activity. In addition to the high ORR activity and stability, the cost of production of Mn3O4 QDs/N-p-MCNTs is low, which will broadly facilitate the real application of metal–air batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.8b06984</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4496-0057</orcidid><orcidid>https://orcid.org/0000-0003-0885-6172</orcidid><orcidid>https://orcid.org/0000-0003-3464-5301</orcidid><orcidid>https://orcid.org/0000-0003-2360-7668</orcidid><orcidid>https://orcid.org/0000-0003-0146-5259</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-07, Vol.10 (28), p.23900-23909 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2060866647 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Mn3O4 Quantum Dots Supported on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as Oxygen Reduction Electrocatalysts for High-Performance Zn–Air Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mn3O4%20Quantum%20Dots%20Supported%20on%20Nitrogen-Doped%20Partially%20Exfoliated%20Multiwall%20Carbon%20Nanotubes%20as%20Oxygen%20Reduction%20Electrocatalysts%20for%20High-Performance%20Zn%E2%80%93Air%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Huang,%20Zongxiong&rft.date=2018-07-18&rft.volume=10&rft.issue=28&rft.spage=23900&rft.epage=23909&rft.pages=23900-23909&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b06984&rft_dat=%3Cproquest_acs_j%3E2060866647%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a289t-157dcafad7bdc82b5f932729c4c5f02f0e40a2287cf8c2610869380ffcd38af83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2060866647&rft_id=info:pmid/&rfr_iscdi=true |