Loading…

Acute cocoa flavanols intake improves cerebral hemodynamics while maintaining brain activity and cognitive performance in moderate hypoxia

Introduction Acute cocoa flavanols (CF) intake has been suggested to modulate cognitive function and neurovascular coupling (NVC). Whether increased NVC is solely driven by improved vascular responsiveness or also by neuronal activity remains unknown. This study investigated the effects of acute CF...

Full description

Saved in:
Bibliographic Details
Published in:Psychopharmacology 2018-09, Vol.235 (9), p.2597-2608
Main Authors: Decroix, L., De Pauw, K., Van Cutsem, J., Pattyn, N., Heyman, E., Meeusen, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction Acute cocoa flavanols (CF) intake has been suggested to modulate cognitive function and neurovascular coupling (NVC). Whether increased NVC is solely driven by improved vascular responsiveness or also by neuronal activity remains unknown. This study investigated the effects of acute CF intake on cognitive performance, NVC, and neuronal activity in healthy subjects in normoxia and hypoxia (4000 m simulated altitude; 12.7% O 2 ). Methods Twenty healthy subjects (age 23.2 ± 4.3 years) performed four trials. Participants performed a Stroop task and “cognition” battery 2 h after acute CF (530 mg CF, 100 mg epicatechin) or placebo intake, and 30 min after initial exposure to hypoxia or normoxia. Electroencephalogram and functional near-infrared spectroscopy were used to analyze hemodynamic changes and neuronal activity. Results CF enhanced NVC in the right prefrontal cortex during several tasks (risk decision making, visual tracking, complex scanning, spatial orientation), while neuronal activity was not affected. CF improved abstract thinking in normoxia, but not in hypoxia and did not improve other cognitive performances. Hypoxia decreased accuracy on the Stroop task, but performance on other cognitive tasks was preserved. NVC and neuronal activity during cognitive tasks were similar in hypoxia vs. normoxia, with the exception of increased β activity in the primary motor cortex during abstract thinking. Conclusions Acute CF intake improved NVC, but did not affect neuronal activity and cognitive performance in both normoxia and hypoxia. Most cognitive functions, as well as NVC and neuronal activity, did not decline by acute exposure to moderate hypoxia in healthy subjects.
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-018-4952-2