Loading…
Temperature scenarios for Norway: from regional to local scale
Scenarios with daily time resolution are frequently used in research on the impacts of climate change. These are traditionally developed by regional climate models (RCMs). The spatial resolution, however, is usually too coarse for local climate change analysis, especially in regions with complex top...
Saved in:
Published in: | Climate dynamics 2007-10, Vol.29 (5), p.441-453 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Scenarios with daily time resolution are frequently used in research on the impacts of climate change. These are traditionally developed by regional climate models (RCMs). The spatial resolution, however, is usually too coarse for local climate change analysis, especially in regions with complex topography, such as Norway. The RCM used, HIRHAM, is run with lateral boundary forcing provided from two global medium resolution models; the ECHAM4/OPYC3 from MPI and the HadAM3H from the Hadley centre. The first is run with IPCC SRES emission scenario B2, the latter is run with IPCC SRES emission scenarios A2 and B2. All three scenarios represent the future time period 2071-2100. Both models have a control run, representing the present climate (1961-1990). Daily temperature scenarios are interpolated from HIRHAM to Norwegian temperature stations. The at-site HIRHAM-temperatures, both for the control and scenario runs, are adjusted to be locally representative. Mean monthly values and standard deviations based on daily values of the adjusted HIRHAM-temperatures, as well as the cumulative distribution curve of daily seasonal temperatures, are conclusive with observations for the control period. Residual kriging are used on the adjusted daily HIRHAM-temperatures to obtain high spatial temperature scenarios. Mean seasonal temperature grids are obtained. By adjusting the control runs and scenarios and improving the spatial resolution of the scenarios, the absolute temperature values are representative at a local scale. The scenarios indicate larger warming in winter than in summer in the Scandinavian regions. A marked west-east and south-north gradient is projected for Norway, where the largest increase is in eastern and northern regions. The temperature of the coldest winter days is projected to increase more than the warmer temperatures. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-007-0241-1 |