Loading…

Children's Understanding of the Natural Numbers’ Structure

When young children attempt to locate numbers along a number line, they show logarithmic (or other compressive) placement. For example, the distance between “5” and “10” is larger than the distance between “75” and “80.” This has often been explained by assuming that children have a logarithmically...

Full description

Saved in:
Bibliographic Details
Published in:Cognitive science 2018-08, Vol.42 (6), p.1945-1973
Main Authors: Asmuth, Jennifer, Morson, Emily M., Rips, Lance J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When young children attempt to locate numbers along a number line, they show logarithmic (or other compressive) placement. For example, the distance between “5” and “10” is larger than the distance between “75” and “80.” This has often been explained by assuming that children have a logarithmically scaled mental representation of number (e.g., Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, ; Siegler & Opfer, ). However, several investigators have questioned this argument (e.g., Barth & Paladino, ; Cantlon, Cordes, Libertus, & Brannon, ; Cohen & Blanc‐Goldhammer, ). We show here that children prefer linear number lines over logarithmic lines when they do not have to deal with the meanings of individual numerals (i.e., number symbols, such as “5” or “80”). In Experiments 1 and 2, when 5‐ and 6‐year‐olds choose between number lines in a forced‐choice task, they prefer linear to logarithmic and exponential displays. However, this preference does not persist when Experiment 3 presents the same lines without reference to numbers, and children simply choose which line they like best. In Experiments 4 and 5, children position beads on a number line to indicate how the integers 1–100 are arranged. The bead placement of 4‐ and 5‐year‐olds is better fit by a linear than by a logarithmic model. We argue that previous results from the number‐line task may depend on strategies specific to the task.
ISSN:0364-0213
1551-6709
DOI:10.1111/cogs.12615