Loading…

Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers

Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical p...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2018, Vol.14 (29), p.6024-6036
Main Authors: Merkel, Daniel R, Traugutt, Nicholas A, Visvanathan, Rayshan, Yakacki, Christopher M, Frick, Carl P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293
cites cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293
container_end_page 6036
container_issue 29
container_start_page 6024
container_title Soft matter
container_volume 14
creator Merkel, Daniel R
Traugutt, Nicholas A
Visvanathan, Rayshan
Yakacki, Christopher M
Frick, Carl P
description Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.
doi_str_mv 10.1039/c8sm01178h
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2064767366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064767366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</originalsourceid><addsrcrecordid>eNpd0E9LwzAYBvAgitPpxQ8gBS8iVPO3SY8y1AmKB6d4K1n6lmU0zZa0B7-9mZs7eEry8svDw4vQBcG3BLPyzqjoMCFSLQ7QCZGc54Xi6nB_Z18jdBrjEmOmOCmO0YiWpeSEiBP0OVtAcN6BWejOGt1mq-BXEHoLMfNN5nzna--07bIOnO6tyTaPPPE0au16sHVmwnfs01dodexTVohn6KjRbYTz3TlGH48Ps8k0f3l7ep7cv-SGE9XnAnjqYbSaS6CKC14zQTHjSjMNRgto5kpK3ihBa6kZABNaUMlqTHXJaMnG6Hqbm1qvB4h95Ww00La6Az_EiuKCy0Kyokj06h9d-iF0qV1SUkicFEnqZqtM8DEGaKpVsE6H74rgarPtaqLeX3-3PU34chc5zB3Ue_q3XvYD3lx6mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075707361</pqid></control><display><type>article</type><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><source>Royal Society of Chemistry</source><creator>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</creator><creatorcontrib>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</creatorcontrib><description>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm01178h</identifier><identifier>PMID: 29974115</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuation ; Actuators ; Chains ; Crosslinking ; Elastomers ; Liquid crystals ; Mechanical properties ; Modulus of elasticity ; Monomers ; Nematic crystals ; Strain ; Tensile stress ; Thermomechanical properties ; Transition temperature ; Transition temperatures</subject><ispartof>Soft matter, 2018, Vol.14 (29), p.6024-6036</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</citedby><cites>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</cites><orcidid>0000-0002-8847-7430 ; 0000-0003-3356-7428 ; 0000-0003-4752-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29974115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merkel, Daniel R</creatorcontrib><creatorcontrib>Traugutt, Nicholas A</creatorcontrib><creatorcontrib>Visvanathan, Rayshan</creatorcontrib><creatorcontrib>Yakacki, Christopher M</creatorcontrib><creatorcontrib>Frick, Carl P</creatorcontrib><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Chains</subject><subject>Crosslinking</subject><subject>Elastomers</subject><subject>Liquid crystals</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monomers</subject><subject>Nematic crystals</subject><subject>Strain</subject><subject>Tensile stress</subject><subject>Thermomechanical properties</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0E9LwzAYBvAgitPpxQ8gBS8iVPO3SY8y1AmKB6d4K1n6lmU0zZa0B7-9mZs7eEry8svDw4vQBcG3BLPyzqjoMCFSLQ7QCZGc54Xi6nB_Z18jdBrjEmOmOCmO0YiWpeSEiBP0OVtAcN6BWejOGt1mq-BXEHoLMfNN5nzna--07bIOnO6tyTaPPPE0au16sHVmwnfs01dodexTVohn6KjRbYTz3TlGH48Ps8k0f3l7ep7cv-SGE9XnAnjqYbSaS6CKC14zQTHjSjMNRgto5kpK3ihBa6kZABNaUMlqTHXJaMnG6Hqbm1qvB4h95Ww00La6Az_EiuKCy0Kyokj06h9d-iF0qV1SUkicFEnqZqtM8DEGaKpVsE6H74rgarPtaqLeX3-3PU34chc5zB3Ue_q3XvYD3lx6mw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Merkel, Daniel R</creator><creator>Traugutt, Nicholas A</creator><creator>Visvanathan, Rayshan</creator><creator>Yakacki, Christopher M</creator><creator>Frick, Carl P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8847-7430</orcidid><orcidid>https://orcid.org/0000-0003-3356-7428</orcidid><orcidid>https://orcid.org/0000-0003-4752-5667</orcidid></search><sort><creationdate>2018</creationdate><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><author>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Chains</topic><topic>Crosslinking</topic><topic>Elastomers</topic><topic>Liquid crystals</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monomers</topic><topic>Nematic crystals</topic><topic>Strain</topic><topic>Tensile stress</topic><topic>Thermomechanical properties</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkel, Daniel R</creatorcontrib><creatorcontrib>Traugutt, Nicholas A</creatorcontrib><creatorcontrib>Visvanathan, Rayshan</creatorcontrib><creatorcontrib>Yakacki, Christopher M</creatorcontrib><creatorcontrib>Frick, Carl P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkel, Daniel R</au><au>Traugutt, Nicholas A</au><au>Visvanathan, Rayshan</au><au>Yakacki, Christopher M</au><au>Frick, Carl P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>6024</spage><epage>6036</epage><pages>6024-6036</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29974115</pmid><doi>10.1039/c8sm01178h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8847-7430</orcidid><orcidid>https://orcid.org/0000-0003-3356-7428</orcidid><orcidid>https://orcid.org/0000-0003-4752-5667</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (29), p.6024-6036
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2064767366
source Royal Society of Chemistry
subjects Actuation
Actuators
Chains
Crosslinking
Elastomers
Liquid crystals
Mechanical properties
Modulus of elasticity
Monomers
Nematic crystals
Strain
Tensile stress
Thermomechanical properties
Transition temperature
Transition temperatures
title Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20properties%20of%20monodomain%20nematic%20main-chain%20liquid%20crystal%20elastomers&rft.jtitle=Soft%20matter&rft.au=Merkel,%20Daniel%20R&rft.date=2018&rft.volume=14&rft.issue=29&rft.spage=6024&rft.epage=6036&rft.pages=6024-6036&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm01178h&rft_dat=%3Cproquest_cross%3E2064767366%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075707361&rft_id=info:pmid/29974115&rfr_iscdi=true