Loading…
Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers
Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical p...
Saved in:
Published in: | Soft matter 2018, Vol.14 (29), p.6024-6036 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293 |
container_end_page | 6036 |
container_issue | 29 |
container_start_page | 6024 |
container_title | Soft matter |
container_volume | 14 |
creator | Merkel, Daniel R Traugutt, Nicholas A Visvanathan, Rayshan Yakacki, Christopher M Frick, Carl P |
description | Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators. |
doi_str_mv | 10.1039/c8sm01178h |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2064767366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064767366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</originalsourceid><addsrcrecordid>eNpd0E9LwzAYBvAgitPpxQ8gBS8iVPO3SY8y1AmKB6d4K1n6lmU0zZa0B7-9mZs7eEry8svDw4vQBcG3BLPyzqjoMCFSLQ7QCZGc54Xi6nB_Z18jdBrjEmOmOCmO0YiWpeSEiBP0OVtAcN6BWejOGt1mq-BXEHoLMfNN5nzna--07bIOnO6tyTaPPPE0au16sHVmwnfs01dodexTVohn6KjRbYTz3TlGH48Ps8k0f3l7ep7cv-SGE9XnAnjqYbSaS6CKC14zQTHjSjMNRgto5kpK3ihBa6kZABNaUMlqTHXJaMnG6Hqbm1qvB4h95Ww00La6Az_EiuKCy0Kyokj06h9d-iF0qV1SUkicFEnqZqtM8DEGaKpVsE6H74rgarPtaqLeX3-3PU34chc5zB3Ue_q3XvYD3lx6mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2075707361</pqid></control><display><type>article</type><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><source>Royal Society of Chemistry</source><creator>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</creator><creatorcontrib>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</creatorcontrib><description>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c8sm01178h</identifier><identifier>PMID: 29974115</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Actuation ; Actuators ; Chains ; Crosslinking ; Elastomers ; Liquid crystals ; Mechanical properties ; Modulus of elasticity ; Monomers ; Nematic crystals ; Strain ; Tensile stress ; Thermomechanical properties ; Transition temperature ; Transition temperatures</subject><ispartof>Soft matter, 2018, Vol.14 (29), p.6024-6036</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</citedby><cites>FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</cites><orcidid>0000-0002-8847-7430 ; 0000-0003-3356-7428 ; 0000-0003-4752-5667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29974115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merkel, Daniel R</creatorcontrib><creatorcontrib>Traugutt, Nicholas A</creatorcontrib><creatorcontrib>Visvanathan, Rayshan</creatorcontrib><creatorcontrib>Yakacki, Christopher M</creatorcontrib><creatorcontrib>Frick, Carl P</creatorcontrib><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Chains</subject><subject>Crosslinking</subject><subject>Elastomers</subject><subject>Liquid crystals</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monomers</subject><subject>Nematic crystals</subject><subject>Strain</subject><subject>Tensile stress</subject><subject>Thermomechanical properties</subject><subject>Transition temperature</subject><subject>Transition temperatures</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0E9LwzAYBvAgitPpxQ8gBS8iVPO3SY8y1AmKB6d4K1n6lmU0zZa0B7-9mZs7eEry8svDw4vQBcG3BLPyzqjoMCFSLQ7QCZGc54Xi6nB_Z18jdBrjEmOmOCmO0YiWpeSEiBP0OVtAcN6BWejOGt1mq-BXEHoLMfNN5nzna--07bIOnO6tyTaPPPE0au16sHVmwnfs01dodexTVohn6KjRbYTz3TlGH48Ps8k0f3l7ep7cv-SGE9XnAnjqYbSaS6CKC14zQTHjSjMNRgto5kpK3ihBa6kZABNaUMlqTHXJaMnG6Hqbm1qvB4h95Ww00La6Az_EiuKCy0Kyokj06h9d-iF0qV1SUkicFEnqZqtM8DEGaKpVsE6H74rgarPtaqLeX3-3PU34chc5zB3Ue_q3XvYD3lx6mw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Merkel, Daniel R</creator><creator>Traugutt, Nicholas A</creator><creator>Visvanathan, Rayshan</creator><creator>Yakacki, Christopher M</creator><creator>Frick, Carl P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8847-7430</orcidid><orcidid>https://orcid.org/0000-0003-3356-7428</orcidid><orcidid>https://orcid.org/0000-0003-4752-5667</orcidid></search><sort><creationdate>2018</creationdate><title>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</title><author>Merkel, Daniel R ; Traugutt, Nicholas A ; Visvanathan, Rayshan ; Yakacki, Christopher M ; Frick, Carl P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Chains</topic><topic>Crosslinking</topic><topic>Elastomers</topic><topic>Liquid crystals</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monomers</topic><topic>Nematic crystals</topic><topic>Strain</topic><topic>Tensile stress</topic><topic>Thermomechanical properties</topic><topic>Transition temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkel, Daniel R</creatorcontrib><creatorcontrib>Traugutt, Nicholas A</creatorcontrib><creatorcontrib>Visvanathan, Rayshan</creatorcontrib><creatorcontrib>Yakacki, Christopher M</creatorcontrib><creatorcontrib>Frick, Carl P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkel, Daniel R</au><au>Traugutt, Nicholas A</au><au>Visvanathan, Rayshan</au><au>Yakacki, Christopher M</au><au>Frick, Carl P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>29</issue><spage>6024</spage><epage>6036</epage><pages>6024-6036</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Two-stage thiol-acrylate Michael addition reactions have proven useful in programming main-chain liquid crystal elastomers (LCEs). However, the influence of excess acrylate concentration, which is critical to monodomain programming, has not previously been examined with respect to thermomechanical properties in these two-stage LCEs. Previous studies of thiol-acrylate LCEs have focused on polydomain LCEs and/or variation of thiol crosslinking monomers or linear thiol monomers. This study guides the design of monodomain LCE actuators using the two-stage methodology by varying the concentration of mesogenic acrylate monomers from 2 mol% to 45 mol% in stoichiometric excess of thiol. The findings demonstrate a technique to tailor the isotropic transition temperature by 44 °C using identical starting monomers. In contrast to expectations, low amounts of excess acrylate showed excellent fixity (90.4 ± 2.9%), while high amounts of excess acrylate did not hinder actuation strain (87.3 ± 2.3%). Tensile stress-strain properties were influenced by excess acrylate. Linear elastic behavior was observed parallel to the director with modulus increasing from 1.4 to 6.1 MPa. The soft elastic plateau was observed perpendicular to the director with initial modulus and threshold stresses increasing from 0.6 MPa to 2.6 MPa and 14 kPa to 208 kPa, respectively. Overall, this study examines the influence of excess acrylate on mechanical properties of LCE actuators.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29974115</pmid><doi>10.1039/c8sm01178h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8847-7430</orcidid><orcidid>https://orcid.org/0000-0003-3356-7428</orcidid><orcidid>https://orcid.org/0000-0003-4752-5667</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2018, Vol.14 (29), p.6024-6036 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2064767366 |
source | Royal Society of Chemistry |
subjects | Actuation Actuators Chains Crosslinking Elastomers Liquid crystals Mechanical properties Modulus of elasticity Monomers Nematic crystals Strain Tensile stress Thermomechanical properties Transition temperature Transition temperatures |
title | Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermomechanical%20properties%20of%20monodomain%20nematic%20main-chain%20liquid%20crystal%20elastomers&rft.jtitle=Soft%20matter&rft.au=Merkel,%20Daniel%20R&rft.date=2018&rft.volume=14&rft.issue=29&rft.spage=6024&rft.epage=6036&rft.pages=6024-6036&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c8sm01178h&rft_dat=%3Cproquest_cross%3E2064767366%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-5e4741ca8b7e28454d3520348a3aeca5efb8774f852d7a3ee35a5273d02a93293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2075707361&rft_id=info:pmid/29974115&rfr_iscdi=true |