Loading…
Numerical error monitoring
Error monitoring has recently been discovered to have informationally rich foundations in the timing domain. Based on the common properties of magnitude-based representations, we hypothesized that judgments on the direction and the magnitude of errors would also reflect their objective counterparts...
Saved in:
Published in: | Psychonomic bulletin & review 2018-08, Vol.25 (4), p.1549-1555 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963 |
container_end_page | 1555 |
container_issue | 4 |
container_start_page | 1549 |
container_title | Psychonomic bulletin & review |
container_volume | 25 |
creator | Duyan, Yalçın Akın Balcı, Fuat |
description | Error monitoring has recently been discovered to have informationally rich foundations in the timing domain. Based on the common properties of magnitude-based representations, we hypothesized that judgments on the direction and the magnitude of errors would also reflect their objective counterparts in the numerosity domain. In two experiments, we presented fast sequences of “beeps” with random interstimulus intervals and asked participants to stop the sequence when they thought the target count (7, 11, or 19) had been reached. Participants then judged how close to the target they stopped the sequence, and whether their response undershot or overshot the target. Individual linear regression fits as well as the linear mixed model with a fixed effect of reproduced numerosity on confidence ratings, and participants as independent random effects on the intercept and the slope, revealed significant positive slopes for all the target numerosities. Our results suggest that humans can keep track of the direction and degree of errors in the estimation of discrete quantities, pointing at a numerical-error-monitoring ability. |
doi_str_mv | 10.3758/s13423-018-1506-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2066483884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066483884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoVqs_QA9S8OIlOpOvTY5S_IKiFz2H7DaVLbubmnSh_ntTtioInmYOz7wz8xByhnDNC6lvEnLBOAXUFCUoutkjRyg5UskZ7OcelKGGazEixyktAUAqow7JiBmjwRh5RM6f-9bHunLNxMcY4qQNXb0Ose7eT8jBwjXJn-7qmLzd371OH-ns5eFpejujlUC5pq7k6JUUEhiqeSWk585JwyRzSmlXcFeCA6NRlYJ7Bo6hKAViKYt5VRjFx-RqyF3F8NH7tLZtnSrfNK7zoU-WgVJCc61FRi__oMvQxy5fZxkazF8b4JnCgapiSCn6hV3FunXx0yLYrTg7iLNZnN2Ks5s8c7FL7svWz38mvk1lgA1AWm3l-Pi7-v_ULzgCddU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191320903</pqid></control><display><type>article</type><title>Numerical error monitoring</title><source>Springer Link</source><creator>Duyan, Yalçın Akın ; Balcı, Fuat</creator><creatorcontrib>Duyan, Yalçın Akın ; Balcı, Fuat</creatorcontrib><description>Error monitoring has recently been discovered to have informationally rich foundations in the timing domain. Based on the common properties of magnitude-based representations, we hypothesized that judgments on the direction and the magnitude of errors would also reflect their objective counterparts in the numerosity domain. In two experiments, we presented fast sequences of “beeps” with random interstimulus intervals and asked participants to stop the sequence when they thought the target count (7, 11, or 19) had been reached. Participants then judged how close to the target they stopped the sequence, and whether their response undershot or overshot the target. Individual linear regression fits as well as the linear mixed model with a fixed effect of reproduced numerosity on confidence ratings, and participants as independent random effects on the intercept and the slope, revealed significant positive slopes for all the target numerosities. Our results suggest that humans can keep track of the direction and degree of errors in the estimation of discrete quantities, pointing at a numerical-error-monitoring ability.</description><identifier>ISSN: 1069-9384</identifier><identifier>EISSN: 1531-5320</identifier><identifier>DOI: 10.3758/s13423-018-1506-x</identifier><identifier>PMID: 29980995</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Acoustic Stimulation ; Auditory Perception ; Behavioral Science and Psychology ; Brief Report ; Cognition & reasoning ; Cognitive Psychology ; Estimates ; Experiments ; Humans ; Judgment ; Linear Models ; Mathematics ; Metacognition ; Models, Psychological ; Neurosciences ; Psychology ; Science</subject><ispartof>Psychonomic bulletin & review, 2018-08, Vol.25 (4), p.1549-1555</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>Copyright Springer Nature B.V. Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963</citedby><cites>FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963</cites><orcidid>0000-0002-4527-0165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29980995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duyan, Yalçın Akın</creatorcontrib><creatorcontrib>Balcı, Fuat</creatorcontrib><title>Numerical error monitoring</title><title>Psychonomic bulletin & review</title><addtitle>Psychon Bull Rev</addtitle><addtitle>Psychon Bull Rev</addtitle><description>Error monitoring has recently been discovered to have informationally rich foundations in the timing domain. Based on the common properties of magnitude-based representations, we hypothesized that judgments on the direction and the magnitude of errors would also reflect their objective counterparts in the numerosity domain. In two experiments, we presented fast sequences of “beeps” with random interstimulus intervals and asked participants to stop the sequence when they thought the target count (7, 11, or 19) had been reached. Participants then judged how close to the target they stopped the sequence, and whether their response undershot or overshot the target. Individual linear regression fits as well as the linear mixed model with a fixed effect of reproduced numerosity on confidence ratings, and participants as independent random effects on the intercept and the slope, revealed significant positive slopes for all the target numerosities. Our results suggest that humans can keep track of the direction and degree of errors in the estimation of discrete quantities, pointing at a numerical-error-monitoring ability.</description><subject>Accuracy</subject><subject>Acoustic Stimulation</subject><subject>Auditory Perception</subject><subject>Behavioral Science and Psychology</subject><subject>Brief Report</subject><subject>Cognition & reasoning</subject><subject>Cognitive Psychology</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Humans</subject><subject>Judgment</subject><subject>Linear Models</subject><subject>Mathematics</subject><subject>Metacognition</subject><subject>Models, Psychological</subject><subject>Neurosciences</subject><subject>Psychology</subject><subject>Science</subject><issn>1069-9384</issn><issn>1531-5320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoVqs_QA9S8OIlOpOvTY5S_IKiFz2H7DaVLbubmnSh_ntTtioInmYOz7wz8xByhnDNC6lvEnLBOAXUFCUoutkjRyg5UskZ7OcelKGGazEixyktAUAqow7JiBmjwRh5RM6f-9bHunLNxMcY4qQNXb0Ose7eT8jBwjXJn-7qmLzd371OH-ns5eFpejujlUC5pq7k6JUUEhiqeSWk585JwyRzSmlXcFeCA6NRlYJ7Bo6hKAViKYt5VRjFx-RqyF3F8NH7tLZtnSrfNK7zoU-WgVJCc61FRi__oMvQxy5fZxkazF8b4JnCgapiSCn6hV3FunXx0yLYrTg7iLNZnN2Ks5s8c7FL7svWz38mvk1lgA1AWm3l-Pi7-v_ULzgCddU</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Duyan, Yalçın Akın</creator><creator>Balcı, Fuat</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4527-0165</orcidid></search><sort><creationdate>20180801</creationdate><title>Numerical error monitoring</title><author>Duyan, Yalçın Akın ; Balcı, Fuat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Acoustic Stimulation</topic><topic>Auditory Perception</topic><topic>Behavioral Science and Psychology</topic><topic>Brief Report</topic><topic>Cognition & reasoning</topic><topic>Cognitive Psychology</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Humans</topic><topic>Judgment</topic><topic>Linear Models</topic><topic>Mathematics</topic><topic>Metacognition</topic><topic>Models, Psychological</topic><topic>Neurosciences</topic><topic>Psychology</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duyan, Yalçın Akın</creatorcontrib><creatorcontrib>Balcı, Fuat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psychonomic bulletin & review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duyan, Yalçın Akın</au><au>Balcı, Fuat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical error monitoring</atitle><jtitle>Psychonomic bulletin & review</jtitle><stitle>Psychon Bull Rev</stitle><addtitle>Psychon Bull Rev</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>25</volume><issue>4</issue><spage>1549</spage><epage>1555</epage><pages>1549-1555</pages><issn>1069-9384</issn><eissn>1531-5320</eissn><abstract>Error monitoring has recently been discovered to have informationally rich foundations in the timing domain. Based on the common properties of magnitude-based representations, we hypothesized that judgments on the direction and the magnitude of errors would also reflect their objective counterparts in the numerosity domain. In two experiments, we presented fast sequences of “beeps” with random interstimulus intervals and asked participants to stop the sequence when they thought the target count (7, 11, or 19) had been reached. Participants then judged how close to the target they stopped the sequence, and whether their response undershot or overshot the target. Individual linear regression fits as well as the linear mixed model with a fixed effect of reproduced numerosity on confidence ratings, and participants as independent random effects on the intercept and the slope, revealed significant positive slopes for all the target numerosities. Our results suggest that humans can keep track of the direction and degree of errors in the estimation of discrete quantities, pointing at a numerical-error-monitoring ability.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29980995</pmid><doi>10.3758/s13423-018-1506-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4527-0165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-9384 |
ispartof | Psychonomic bulletin & review, 2018-08, Vol.25 (4), p.1549-1555 |
issn | 1069-9384 1531-5320 |
language | eng |
recordid | cdi_proquest_miscellaneous_2066483884 |
source | Springer Link |
subjects | Accuracy Acoustic Stimulation Auditory Perception Behavioral Science and Psychology Brief Report Cognition & reasoning Cognitive Psychology Estimates Experiments Humans Judgment Linear Models Mathematics Metacognition Models, Psychological Neurosciences Psychology Science |
title | Numerical error monitoring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20error%20monitoring&rft.jtitle=Psychonomic%20bulletin%20&%20review&rft.au=Duyan,%20Yal%C3%A7%C4%B1n%20Ak%C4%B1n&rft.date=2018-08-01&rft.volume=25&rft.issue=4&rft.spage=1549&rft.epage=1555&rft.pages=1549-1555&rft.issn=1069-9384&rft.eissn=1531-5320&rft_id=info:doi/10.3758/s13423-018-1506-x&rft_dat=%3Cproquest_cross%3E2066483884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-ab31e65450216dc45e3aa59252a668a73ab0a09816b43e20a214b411b57dc7963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191320903&rft_id=info:pmid/29980995&rfr_iscdi=true |