Loading…

Influence of a self-regulated cognitive dual task on time to failure and complexity of submaximal isometric force control

Purpose To determine the effects of performing a self-regulated cognitive dual task on time to failure and neuromuscular force control during submaximal isometric contractions. Methods Fifteen young sedentary males performed isometric contractions at 50% of each individual’s maximal voluntary contra...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology 2018-09, Vol.118 (9), p.2021-2027
Main Authors: Cruz-Montecinos, Carlos, Calatayud, Joaquín, Iturriaga, Carolina, Bustos, Claudio, Mena, Benjamín, España-Romero, Vanesa, Carpes, Felipe P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose To determine the effects of performing a self-regulated cognitive dual task on time to failure and neuromuscular force control during submaximal isometric contractions. Methods Fifteen young sedentary males performed isometric contractions at 50% of each individual’s maximal voluntary contraction (MVC) under single-task (without cognitive load) and dual-task (with self-regulated mathematical task) conditions. Force signal complexity and biceps brachialis muscle activity were determined at the start, middle, and end of each trial. The slope of the linear regression of median frequency determined the rate of muscle fatigue. Force-task error was established as any amplitude percentage greater or less than 50% MVC. Results The dual-task condition resulted in a 42 s longer time to failure than the single-task condition. EMG amplitude did not differ between conditions. The rate of muscle fatigue was higher in the single-task (− 0.35%/s) than the dual-task (− 0.2%/s) condition. Force signal complexity was, on average, 22% lower in the dual-task condition. The dual-task condition, as compared to the single-task condition, elicited a higher rate of force-task error below (6.37 versus 4.76%) and over (2.11 versus 1.68%) the force threshold. Conclusion The dual-task condition resulted in a longer time to failure and decreased motor output complexity and fatigue rate when performing a submaximal force task. As the dual task also increased the force-task error, we suggest cognitive dual tasks as a possible strategy for delaying fatigue in sedentary young males when exerting submaximal isometric force, contributing to neuromuscular training when error in force control can be ignored.
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-018-3936-6