Loading…

Brain Metabolites and Peripheral Biomarkers Associated with Neuroinflammation in Complex Regional Pain Syndrome Using [11C]-(R)-PK11195 Positron Emission Tomography and Magnetic Resonance Spectroscopy: A Pilot Study

Abstract Objective The aim of this study was to find peripheral biomarkers and central metabolites affecting neuroinflammation in complex regional pain syndrome (CRPS) patients using [11C]-(R)-PK11195 positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). Methods Using MRS and...

Full description

Saved in:
Bibliographic Details
Published in:Pain medicine (Malden, Mass.) Mass.), 2019-03, Vol.20 (3), p.504-514
Main Authors: Jung, Ye-Ha, Kim, Hyeonjin, Yeon Jeon, So, Min Kwon, Jeong, Joon Lee, Won, Chul Kim, Yong, Hwan Jang, Joon, Choi, Soo-Hee, Lee, Jun-Young, Kang, Do-Hyung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objective The aim of this study was to find peripheral biomarkers and central metabolites affecting neuroinflammation in complex regional pain syndrome (CRPS) patients using [11C]-(R)-PK11195 positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). Methods Using MRS and PET, we measured associations between neurometabolites and neuroinflammation in 12 CRPS patients and 11 healthy controls. Also, we investigated various peripheral parameters that may affect neuroinflammation in CRPS. Results We found positive correlations of Lipid (Lip)13a/total creatine (tCr) and Lip09/tCr with neuroinflammation, the distribution volume ratio (DVR) of [11C]-(R)-PK11195 in the right and left insula in CRPS patients. However, these correlations were not found in controls. High hemoglobin levels correlated with decreased neuroinflammation (the DVR of [11C]-(R)-PK11195) in the right thalamus and left insula in healthy controls. We found that high levels of glucose and pH correlated with increased neuroinflammation, but high levels of CO2, basophil, and creatinine were associated with decreased neuroinflammation in the left thalamus and the right and left insula in CRPS patients. Conclusions This is the first report indicating that elevated neuroinflammation levels are associated primarily with lipids in the brain and pH, glucose, CO2, basophil, and creatinine in the peripheral parameters in CRPS patients. Our results suggest that characterizing the peripheral biomarkers and central metabolites affecting neuroinflammation is essential to understanding the pathophysiology of CRPS.
ISSN:1526-2375
1526-4637
DOI:10.1093/pm/pny111