Loading…
Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data
Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kin...
Saved in:
Published in: | Brain imaging and behavior 2019-08, Vol.13 (4), p.1103-1114 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03 |
container_end_page | 1114 |
container_issue | 4 |
container_start_page | 1103 |
container_title | Brain imaging and behavior |
container_volume | 13 |
creator | Saccà, Valeria Sarica, Alessia Novellino, Fabiana Barone, Stefania Tallarico, Tiziana Filippelli, Enrica Granata, Alfredo Chiriaco, Carmelina Bruno Bossio, Roberto Valentino, Paola Quattrone, Aldo |
description | Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis. |
doi_str_mv | 10.1007/s11682-018-9926-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068344862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067504933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRbK3-ADcScONmNB-TZLKU0mqhIoiuQ27m5N6UTDImmcL9E_3NzeW2FQquciDP--aEp-veE_yZYCy_FELESHtMxl4pKnr1ojslipFecsFfPs1cnnRvSrnBmA-jIq-7E6oazxQ97e4ubk1YTfUpouTQbOzOR0ABTI4-bpEJ25R93c0FLZBdyrOJFlAbUN0BWjJM3j6mWyjs0byG6pcAqNgAORVfkMtpRhlKbZV9qaYCuvzx6wrZFCO0-K2vezSZat52r5wJBd49nGfdn8uL3-ff--uf367Ov173dmBj7R0Iwwje4BEzxZmU2E3MUkbpQNSkNpIYSwXnRgoQjo3SUGsbO02OKw6YnXWfjr1LTn_XtpiefbEQgomQ1qIpFiMbhlHQhn58ht6kNce23YGSHA-KsUaRI2Xbj0sGp5fsZ5P3mmB9kKWPsnSTpQ-ytGqZDw_N62aG6SnxaKcB9AiUdhW3kP89_f_We5Q9oXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067504933</pqid></control><display><type>article</type><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><source>Springer Nature</source><creator>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</creator><creatorcontrib>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</creatorcontrib><description>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-018-9926-9</identifier><identifier>PMID: 29992392</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain mapping ; Classification ; Cognition ; Connectome - methods ; Data processing ; Diagnosis ; Evaluation ; Feature extraction ; Female ; Forecasting - methods ; Functional magnetic resonance imaging ; Humans ; Independent component analysis ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Multiple sclerosis ; Multiple Sclerosis - diagnostic imaging ; Nearest-neighbor ; Neural networks ; Neuropsychology ; Neuroradiology ; Neurosciences ; Original Research ; Psychiatry ; Rest ; Sensorimotor integration ; Signal classification ; Support Vector Machine ; Support vector machines</subject><ispartof>Brain imaging and behavior, 2019-08, Vol.13 (4), p.1103-1114</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</citedby><cites>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</cites><orcidid>0000-0002-5898-938X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29992392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saccà, Valeria</creatorcontrib><creatorcontrib>Sarica, Alessia</creatorcontrib><creatorcontrib>Novellino, Fabiana</creatorcontrib><creatorcontrib>Barone, Stefania</creatorcontrib><creatorcontrib>Tallarico, Tiziana</creatorcontrib><creatorcontrib>Filippelli, Enrica</creatorcontrib><creatorcontrib>Granata, Alfredo</creatorcontrib><creatorcontrib>Chiriaco, Carmelina</creatorcontrib><creatorcontrib>Bruno Bossio, Roberto</creatorcontrib><creatorcontrib>Valentino, Paola</creatorcontrib><creatorcontrib>Quattrone, Aldo</creatorcontrib><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Classification</subject><subject>Cognition</subject><subject>Connectome - methods</subject><subject>Data processing</subject><subject>Diagnosis</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Forecasting - methods</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Nearest-neighbor</subject><subject>Neural networks</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Psychiatry</subject><subject>Rest</subject><subject>Sensorimotor integration</subject><subject>Signal classification</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhgdRbK3-ADcScONmNB-TZLKU0mqhIoiuQ27m5N6UTDImmcL9E_3NzeW2FQquciDP--aEp-veE_yZYCy_FELESHtMxl4pKnr1ojslipFecsFfPs1cnnRvSrnBmA-jIq-7E6oazxQ97e4ubk1YTfUpouTQbOzOR0ABTI4-bpEJ25R93c0FLZBdyrOJFlAbUN0BWjJM3j6mWyjs0byG6pcAqNgAORVfkMtpRhlKbZV9qaYCuvzx6wrZFCO0-K2vezSZat52r5wJBd49nGfdn8uL3-ff--uf367Ov173dmBj7R0Iwwje4BEzxZmU2E3MUkbpQNSkNpIYSwXnRgoQjo3SUGsbO02OKw6YnXWfjr1LTn_XtpiefbEQgomQ1qIpFiMbhlHQhn58ht6kNce23YGSHA-KsUaRI2Xbj0sGp5fsZ5P3mmB9kKWPsnSTpQ-ytGqZDw_N62aG6SnxaKcB9AiUdhW3kP89_f_We5Q9oXU</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Saccà, Valeria</creator><creator>Sarica, Alessia</creator><creator>Novellino, Fabiana</creator><creator>Barone, Stefania</creator><creator>Tallarico, Tiziana</creator><creator>Filippelli, Enrica</creator><creator>Granata, Alfredo</creator><creator>Chiriaco, Carmelina</creator><creator>Bruno Bossio, Roberto</creator><creator>Valentino, Paola</creator><creator>Quattrone, Aldo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5898-938X</orcidid></search><sort><creationdate>20190801</creationdate><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><author>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Classification</topic><topic>Cognition</topic><topic>Connectome - methods</topic><topic>Data processing</topic><topic>Diagnosis</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Forecasting - methods</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Nearest-neighbor</topic><topic>Neural networks</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Psychiatry</topic><topic>Rest</topic><topic>Sensorimotor integration</topic><topic>Signal classification</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saccà, Valeria</creatorcontrib><creatorcontrib>Sarica, Alessia</creatorcontrib><creatorcontrib>Novellino, Fabiana</creatorcontrib><creatorcontrib>Barone, Stefania</creatorcontrib><creatorcontrib>Tallarico, Tiziana</creatorcontrib><creatorcontrib>Filippelli, Enrica</creatorcontrib><creatorcontrib>Granata, Alfredo</creatorcontrib><creatorcontrib>Chiriaco, Carmelina</creatorcontrib><creatorcontrib>Bruno Bossio, Roberto</creatorcontrib><creatorcontrib>Valentino, Paola</creatorcontrib><creatorcontrib>Quattrone, Aldo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saccà, Valeria</au><au>Sarica, Alessia</au><au>Novellino, Fabiana</au><au>Barone, Stefania</au><au>Tallarico, Tiziana</au><au>Filippelli, Enrica</au><au>Granata, Alfredo</au><au>Chiriaco, Carmelina</au><au>Bruno Bossio, Roberto</au><au>Valentino, Paola</au><au>Quattrone, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>1103</spage><epage>1114</epage><pages>1103-1114</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29992392</pmid><doi>10.1007/s11682-018-9926-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5898-938X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-7557 |
ispartof | Brain imaging and behavior, 2019-08, Vol.13 (4), p.1103-1114 |
issn | 1931-7557 1931-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_2068344862 |
source | Springer Nature |
subjects | Adult Algorithms Artificial intelligence Artificial neural networks Bayes Theorem Bayesian analysis Biomedical and Life Sciences Biomedicine Brain Brain mapping Classification Cognition Connectome - methods Data processing Diagnosis Evaluation Feature extraction Female Forecasting - methods Functional magnetic resonance imaging Humans Independent component analysis Learning algorithms Machine Learning Magnetic Resonance Imaging - methods Male Middle Aged Multiple sclerosis Multiple Sclerosis - diagnostic imaging Nearest-neighbor Neural networks Neuropsychology Neuroradiology Neurosciences Original Research Psychiatry Rest Sensorimotor integration Signal classification Support Vector Machine Support vector machines |
title | Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20machine%20learning%20algorithms%20performance%20for%20the%20prediction%20of%20early%20multiple%20sclerosis%20from%20resting-state%20FMRI%20connectivity%20data&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Sacc%C3%A0,%20Valeria&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=1103&rft.epage=1114&rft.pages=1103-1114&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-018-9926-9&rft_dat=%3Cproquest_cross%3E2067504933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067504933&rft_id=info:pmid/29992392&rfr_iscdi=true |