Loading…

Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data

Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kin...

Full description

Saved in:
Bibliographic Details
Published in:Brain imaging and behavior 2019-08, Vol.13 (4), p.1103-1114
Main Authors: Saccà, Valeria, Sarica, Alessia, Novellino, Fabiana, Barone, Stefania, Tallarico, Tiziana, Filippelli, Enrica, Granata, Alfredo, Chiriaco, Carmelina, Bruno Bossio, Roberto, Valentino, Paola, Quattrone, Aldo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03
cites cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03
container_end_page 1114
container_issue 4
container_start_page 1103
container_title Brain imaging and behavior
container_volume 13
creator Saccà, Valeria
Sarica, Alessia
Novellino, Fabiana
Barone, Stefania
Tallarico, Tiziana
Filippelli, Enrica
Granata, Alfredo
Chiriaco, Carmelina
Bruno Bossio, Roberto
Valentino, Paola
Quattrone, Aldo
description Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.
doi_str_mv 10.1007/s11682-018-9926-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2068344862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067504933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRbK3-ADcScONmNB-TZLKU0mqhIoiuQ27m5N6UTDImmcL9E_3NzeW2FQquciDP--aEp-veE_yZYCy_FELESHtMxl4pKnr1ojslipFecsFfPs1cnnRvSrnBmA-jIq-7E6oazxQ97e4ubk1YTfUpouTQbOzOR0ABTI4-bpEJ25R93c0FLZBdyrOJFlAbUN0BWjJM3j6mWyjs0byG6pcAqNgAORVfkMtpRhlKbZV9qaYCuvzx6wrZFCO0-K2vezSZat52r5wJBd49nGfdn8uL3-ff--uf367Ov173dmBj7R0Iwwje4BEzxZmU2E3MUkbpQNSkNpIYSwXnRgoQjo3SUGsbO02OKw6YnXWfjr1LTn_XtpiefbEQgomQ1qIpFiMbhlHQhn58ht6kNce23YGSHA-KsUaRI2Xbj0sGp5fsZ5P3mmB9kKWPsnSTpQ-ytGqZDw_N62aG6SnxaKcB9AiUdhW3kP89_f_We5Q9oXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067504933</pqid></control><display><type>article</type><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><source>Springer Nature</source><creator>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</creator><creatorcontrib>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</creatorcontrib><description>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</description><identifier>ISSN: 1931-7557</identifier><identifier>EISSN: 1931-7565</identifier><identifier>DOI: 10.1007/s11682-018-9926-9</identifier><identifier>PMID: 29992392</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adult ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Bayes Theorem ; Bayesian analysis ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain mapping ; Classification ; Cognition ; Connectome - methods ; Data processing ; Diagnosis ; Evaluation ; Feature extraction ; Female ; Forecasting - methods ; Functional magnetic resonance imaging ; Humans ; Independent component analysis ; Learning algorithms ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Middle Aged ; Multiple sclerosis ; Multiple Sclerosis - diagnostic imaging ; Nearest-neighbor ; Neural networks ; Neuropsychology ; Neuroradiology ; Neurosciences ; Original Research ; Psychiatry ; Rest ; Sensorimotor integration ; Signal classification ; Support Vector Machine ; Support vector machines</subject><ispartof>Brain imaging and behavior, 2019-08, Vol.13 (4), p.1103-1114</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</citedby><cites>FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</cites><orcidid>0000-0002-5898-938X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29992392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saccà, Valeria</creatorcontrib><creatorcontrib>Sarica, Alessia</creatorcontrib><creatorcontrib>Novellino, Fabiana</creatorcontrib><creatorcontrib>Barone, Stefania</creatorcontrib><creatorcontrib>Tallarico, Tiziana</creatorcontrib><creatorcontrib>Filippelli, Enrica</creatorcontrib><creatorcontrib>Granata, Alfredo</creatorcontrib><creatorcontrib>Chiriaco, Carmelina</creatorcontrib><creatorcontrib>Bruno Bossio, Roberto</creatorcontrib><creatorcontrib>Valentino, Paola</creatorcontrib><creatorcontrib>Quattrone, Aldo</creatorcontrib><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><title>Brain imaging and behavior</title><addtitle>Brain Imaging and Behavior</addtitle><addtitle>Brain Imaging Behav</addtitle><description>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain mapping</subject><subject>Classification</subject><subject>Cognition</subject><subject>Connectome - methods</subject><subject>Data processing</subject><subject>Diagnosis</subject><subject>Evaluation</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Forecasting - methods</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - diagnostic imaging</subject><subject>Nearest-neighbor</subject><subject>Neural networks</subject><subject>Neuropsychology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Original Research</subject><subject>Psychiatry</subject><subject>Rest</subject><subject>Sensorimotor integration</subject><subject>Signal classification</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1931-7557</issn><issn>1931-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1rFTEUhgdRbK3-ADcScONmNB-TZLKU0mqhIoiuQ27m5N6UTDImmcL9E_3NzeW2FQquciDP--aEp-veE_yZYCy_FELESHtMxl4pKnr1ojslipFecsFfPs1cnnRvSrnBmA-jIq-7E6oazxQ97e4ubk1YTfUpouTQbOzOR0ABTI4-bpEJ25R93c0FLZBdyrOJFlAbUN0BWjJM3j6mWyjs0byG6pcAqNgAORVfkMtpRhlKbZV9qaYCuvzx6wrZFCO0-K2vezSZat52r5wJBd49nGfdn8uL3-ff--uf367Ov173dmBj7R0Iwwje4BEzxZmU2E3MUkbpQNSkNpIYSwXnRgoQjo3SUGsbO02OKw6YnXWfjr1LTn_XtpiefbEQgomQ1qIpFiMbhlHQhn58ht6kNce23YGSHA-KsUaRI2Xbj0sGp5fsZ5P3mmB9kKWPsnSTpQ-ytGqZDw_N62aG6SnxaKcB9AiUdhW3kP89_f_We5Q9oXU</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Saccà, Valeria</creator><creator>Sarica, Alessia</creator><creator>Novellino, Fabiana</creator><creator>Barone, Stefania</creator><creator>Tallarico, Tiziana</creator><creator>Filippelli, Enrica</creator><creator>Granata, Alfredo</creator><creator>Chiriaco, Carmelina</creator><creator>Bruno Bossio, Roberto</creator><creator>Valentino, Paola</creator><creator>Quattrone, Aldo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5898-938X</orcidid></search><sort><creationdate>20190801</creationdate><title>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</title><author>Saccà, Valeria ; Sarica, Alessia ; Novellino, Fabiana ; Barone, Stefania ; Tallarico, Tiziana ; Filippelli, Enrica ; Granata, Alfredo ; Chiriaco, Carmelina ; Bruno Bossio, Roberto ; Valentino, Paola ; Quattrone, Aldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain mapping</topic><topic>Classification</topic><topic>Cognition</topic><topic>Connectome - methods</topic><topic>Data processing</topic><topic>Diagnosis</topic><topic>Evaluation</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Forecasting - methods</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - diagnostic imaging</topic><topic>Nearest-neighbor</topic><topic>Neural networks</topic><topic>Neuropsychology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Original Research</topic><topic>Psychiatry</topic><topic>Rest</topic><topic>Sensorimotor integration</topic><topic>Signal classification</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saccà, Valeria</creatorcontrib><creatorcontrib>Sarica, Alessia</creatorcontrib><creatorcontrib>Novellino, Fabiana</creatorcontrib><creatorcontrib>Barone, Stefania</creatorcontrib><creatorcontrib>Tallarico, Tiziana</creatorcontrib><creatorcontrib>Filippelli, Enrica</creatorcontrib><creatorcontrib>Granata, Alfredo</creatorcontrib><creatorcontrib>Chiriaco, Carmelina</creatorcontrib><creatorcontrib>Bruno Bossio, Roberto</creatorcontrib><creatorcontrib>Valentino, Paola</creatorcontrib><creatorcontrib>Quattrone, Aldo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain imaging and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saccà, Valeria</au><au>Sarica, Alessia</au><au>Novellino, Fabiana</au><au>Barone, Stefania</au><au>Tallarico, Tiziana</au><au>Filippelli, Enrica</au><au>Granata, Alfredo</au><au>Chiriaco, Carmelina</au><au>Bruno Bossio, Roberto</au><au>Valentino, Paola</au><au>Quattrone, Aldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data</atitle><jtitle>Brain imaging and behavior</jtitle><stitle>Brain Imaging and Behavior</stitle><addtitle>Brain Imaging Behav</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>1103</spage><epage>1114</epage><pages>1103-1114</pages><issn>1931-7557</issn><eissn>1931-7565</eissn><abstract>Machine Learning application on clinical data in order to support diagnosis and prognostic evaluation arouses growing interest in scientific community. However, choice of right algorithm to use was fundamental to perform reliable and robust classification. Our study aimed to explore if different kinds of Machine Learning technique could be effective to support early diagnosis of Multiple Sclerosis and which of them presented best performance in distinguishing Multiple Sclerosis patients from control subjects. We selected following algorithms: Random Forest, Support Vector Machine, Naïve-Bayes, K-nearest-neighbor and Artificial Neural Network. We applied the Independent Component Analysis to resting-state functional-MRI sequence to identify brain networks. We found 15 networks, from which we extracted the mean signals used into classification. We performed feature selection tasks in all algorithms to obtain the most important variables. We showed that best discriminant network between controls and early Multiple Sclerosis, was the sensori-motor I, according to early manifestation of motor/sensorial deficits in Multiple Sclerosis. Moreover, in classification performance, Random Forest and Support Vector Machine showed same 5-fold cross-validation accuracies (85.7%) using only this network, resulting to be best approaches. We believe that these findings could represent encouraging step toward the translation to clinical diagnosis and prognosis.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29992392</pmid><doi>10.1007/s11682-018-9926-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5898-938X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-7557
ispartof Brain imaging and behavior, 2019-08, Vol.13 (4), p.1103-1114
issn 1931-7557
1931-7565
language eng
recordid cdi_proquest_miscellaneous_2068344862
source Springer Nature
subjects Adult
Algorithms
Artificial intelligence
Artificial neural networks
Bayes Theorem
Bayesian analysis
Biomedical and Life Sciences
Biomedicine
Brain
Brain mapping
Classification
Cognition
Connectome - methods
Data processing
Diagnosis
Evaluation
Feature extraction
Female
Forecasting - methods
Functional magnetic resonance imaging
Humans
Independent component analysis
Learning algorithms
Machine Learning
Magnetic Resonance Imaging - methods
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis - diagnostic imaging
Nearest-neighbor
Neural networks
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Psychiatry
Rest
Sensorimotor integration
Signal classification
Support Vector Machine
Support vector machines
title Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20machine%20learning%20algorithms%20performance%20for%20the%20prediction%20of%20early%20multiple%20sclerosis%20from%20resting-state%20FMRI%20connectivity%20data&rft.jtitle=Brain%20imaging%20and%20behavior&rft.au=Sacc%C3%A0,%20Valeria&rft.date=2019-08-01&rft.volume=13&rft.issue=4&rft.spage=1103&rft.epage=1114&rft.pages=1103-1114&rft.issn=1931-7557&rft.eissn=1931-7565&rft_id=info:doi/10.1007/s11682-018-9926-9&rft_dat=%3Cproquest_cross%3E2067504933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-fe6a310b0803953770fd3c2322419d9b71ac2655a76e6f387a2cc803ddf595e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067504933&rft_id=info:pmid/29992392&rfr_iscdi=true