Loading…

Upper-ocean transport mechanisms from the Gulf of Maine to Georges Bank, with implications for Calanus supply

Potential upper-ocean pathways for the supply of biota from the Gulf of Maine to Georges Bank are investigated by numerically tracking particles in realistic 3-d seasonal-mean and tidal flow fields. The flow fields, obtained from a prognostic model forced by observed M 2 tides and seasonal-mean wind...

Full description

Saved in:
Bibliographic Details
Published in:Continental shelf research 1997-12, Vol.17 (15), p.1887-1911
Main Authors: Hannah, C.G., Naimie, C.E., Loder, J.W., Werner, F.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Potential upper-ocean pathways for the supply of biota from the Gulf of Maine to Georges Bank are investigated by numerically tracking particles in realistic 3-d seasonal-mean and tidal flow fields. The flow fields, obtained from a prognostic model forced by observed M 2 tides and seasonal-mean wind stress and density fields, include the major known observational features of the circulation regime in winter, spring and summer — a wind-driven surface layer (in winter and early spring) overlying seasonally-evolving baroclinic and tidally-rectified topographic gyres. The surface layer in winter and early spring, with generally southward drift for typical northwesterly wind stress, can act as a conveyor belt for the transport of biota to Georges Bank, provided that the biota can spend a substantial fraction of time in the surface Ekman layer. The numerical experiments indicate that the upper-ocean drift pathways for biota in the southern Gulf of Maine are strongly sensitive to biological and/or physical processes affecting vertical position in relation to the surface Ekman layer and horizontal position in relation to topographic gyres. The seasonality and location of the identified pathways are generally consistent with observed distributional patterns of Calanus finmarchicus based on the 11-year MARMAP surveys.
ISSN:0278-4343
1873-6955
DOI:10.1016/S0278-4343(97)00048-4