Loading…

A stochastic model for daily rainfall disaggregation into fine time scale for a large region

A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 aut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2007-12, Vol.347 (3), p.358-370
Main Authors: Gyasi-Agyei, Yeboah, Mahbub, S.M. Parvez Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3
cites cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3
container_end_page 370
container_issue 3
container_start_page 358
container_title Journal of hydrology (Amsterdam)
container_volume 347
creator Gyasi-Agyei, Yeboah
Mahbub, S.M. Parvez Bin
description A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.
doi_str_mv 10.1016/j.jhydrol.2007.09.047
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20690280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169407005239</els_id><sourcerecordid>20690280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWD_-BCEXve06yaabzUmk-AWCF49CSJPZNiXdaLIV-t-b2oJH5zKX35s37xFyxaBmwNrbVb1abl2KoeYAsgZVg5BHZMI6qSouQR6TCQDnFWuVOCVnOa-gTNOICfm4p3mMdmny6C1dR4eB9jFRZ3zY0mT80JsQqPPZLBYJF2b0caB-GCPt_YB09Guk2ZqAvzJDg0kLpIUs3AU5KeqMl4d9Tt4fH95nz9Xr29PL7P61srybjpXq0UlskaFTDbipkNg7hhZBtuVtEKis7ZURCpRC01jRCpjP2VRJLjrTnJOb_dnPFL82mEe99tliCGbAuMmaQ6uAd1DA6R60KeacsNefya9N2moGelelXulDlXpXpQalS5VFd30wMLuofTKD9flPrLpOcC4Kd7fnsIT99ph0th4Hi84ntKN20f_j9AMAfI2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20690280</pqid></control><display><type>article</type><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><source>ScienceDirect Freedom Collection</source><creator>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</creator><creatorcontrib>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</creatorcontrib><description>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2007.09.047</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Capping ; Disaggregation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; Parameter uncertainty ; Rainfall ; Regionalisation ; Stochastic</subject><ispartof>Journal of hydrology (Amsterdam), 2007-12, Vol.347 (3), p.358-370</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</citedby><cites>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19884224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyasi-Agyei, Yeboah</creatorcontrib><creatorcontrib>Mahbub, S.M. Parvez Bin</creatorcontrib><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><title>Journal of hydrology (Amsterdam)</title><description>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</description><subject>Capping</subject><subject>Disaggregation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Parameter uncertainty</subject><subject>Rainfall</subject><subject>Regionalisation</subject><subject>Stochastic</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWD_-BCEXve06yaabzUmk-AWCF49CSJPZNiXdaLIV-t-b2oJH5zKX35s37xFyxaBmwNrbVb1abl2KoeYAsgZVg5BHZMI6qSouQR6TCQDnFWuVOCVnOa-gTNOICfm4p3mMdmny6C1dR4eB9jFRZ3zY0mT80JsQqPPZLBYJF2b0caB-GCPt_YB09Guk2ZqAvzJDg0kLpIUs3AU5KeqMl4d9Tt4fH95nz9Xr29PL7P61srybjpXq0UlskaFTDbipkNg7hhZBtuVtEKis7ZURCpRC01jRCpjP2VRJLjrTnJOb_dnPFL82mEe99tliCGbAuMmaQ6uAd1DA6R60KeacsNefya9N2moGelelXulDlXpXpQalS5VFd30wMLuofTKD9flPrLpOcC4Kd7fnsIT99ph0th4Hi84ntKN20f_j9AMAfI2k</recordid><startdate>20071230</startdate><enddate>20071230</enddate><creator>Gyasi-Agyei, Yeboah</creator><creator>Mahbub, S.M. Parvez Bin</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20071230</creationdate><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><author>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Capping</topic><topic>Disaggregation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Parameter uncertainty</topic><topic>Rainfall</topic><topic>Regionalisation</topic><topic>Stochastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyasi-Agyei, Yeboah</creatorcontrib><creatorcontrib>Mahbub, S.M. Parvez Bin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyasi-Agyei, Yeboah</au><au>Mahbub, S.M. Parvez Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2007-12-30</date><risdate>2007</risdate><volume>347</volume><issue>3</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2007.09.047</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2007-12, Vol.347 (3), p.358-370
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_20690280
source ScienceDirect Freedom Collection
subjects Capping
Disaggregation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Hydrology
Hydrology. Hydrogeology
Parameter uncertainty
Rainfall
Regionalisation
Stochastic
title A stochastic model for daily rainfall disaggregation into fine time scale for a large region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20model%20for%20daily%20rainfall%20disaggregation%20into%20fine%20time%20scale%20for%20a%20large%20region&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gyasi-Agyei,%20Yeboah&rft.date=2007-12-30&rft.volume=347&rft.issue=3&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2007.09.047&rft_dat=%3Cproquest_cross%3E20690280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20690280&rft_id=info:pmid/&rfr_iscdi=true