Loading…
A stochastic model for daily rainfall disaggregation into fine time scale for a large region
A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 aut...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2007-12, Vol.347 (3), p.358-370 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3 |
container_end_page | 370 |
container_issue | 3 |
container_start_page | 358 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 347 |
creator | Gyasi-Agyei, Yeboah Mahbub, S.M. Parvez Bin |
description | A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored. |
doi_str_mv | 10.1016/j.jhydrol.2007.09.047 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20690280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169407005239</els_id><sourcerecordid>20690280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWD_-BCEXve06yaabzUmk-AWCF49CSJPZNiXdaLIV-t-b2oJH5zKX35s37xFyxaBmwNrbVb1abl2KoeYAsgZVg5BHZMI6qSouQR6TCQDnFWuVOCVnOa-gTNOICfm4p3mMdmny6C1dR4eB9jFRZ3zY0mT80JsQqPPZLBYJF2b0caB-GCPt_YB09Guk2ZqAvzJDg0kLpIUs3AU5KeqMl4d9Tt4fH95nz9Xr29PL7P61srybjpXq0UlskaFTDbipkNg7hhZBtuVtEKis7ZURCpRC01jRCpjP2VRJLjrTnJOb_dnPFL82mEe99tliCGbAuMmaQ6uAd1DA6R60KeacsNefya9N2moGelelXulDlXpXpQalS5VFd30wMLuofTKD9flPrLpOcC4Kd7fnsIT99ph0th4Hi84ntKN20f_j9AMAfI2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20690280</pqid></control><display><type>article</type><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><source>ScienceDirect Freedom Collection</source><creator>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</creator><creatorcontrib>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</creatorcontrib><description>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2007.09.047</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Capping ; Disaggregation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Hydrology ; Hydrology. Hydrogeology ; Parameter uncertainty ; Rainfall ; Regionalisation ; Stochastic</subject><ispartof>Journal of hydrology (Amsterdam), 2007-12, Vol.347 (3), p.358-370</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</citedby><cites>FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19884224$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyasi-Agyei, Yeboah</creatorcontrib><creatorcontrib>Mahbub, S.M. Parvez Bin</creatorcontrib><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><title>Journal of hydrology (Amsterdam)</title><description>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</description><subject>Capping</subject><subject>Disaggregation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Parameter uncertainty</subject><subject>Rainfall</subject><subject>Regionalisation</subject><subject>Stochastic</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWD_-BCEXve06yaabzUmk-AWCF49CSJPZNiXdaLIV-t-b2oJH5zKX35s37xFyxaBmwNrbVb1abl2KoeYAsgZVg5BHZMI6qSouQR6TCQDnFWuVOCVnOa-gTNOICfm4p3mMdmny6C1dR4eB9jFRZ3zY0mT80JsQqPPZLBYJF2b0caB-GCPt_YB09Guk2ZqAvzJDg0kLpIUs3AU5KeqMl4d9Tt4fH95nz9Xr29PL7P61srybjpXq0UlskaFTDbipkNg7hhZBtuVtEKis7ZURCpRC01jRCpjP2VRJLjrTnJOb_dnPFL82mEe99tliCGbAuMmaQ6uAd1DA6R60KeacsNefya9N2moGelelXulDlXpXpQalS5VFd30wMLuofTKD9flPrLpOcC4Kd7fnsIT99ph0th4Hi84ntKN20f_j9AMAfI2k</recordid><startdate>20071230</startdate><enddate>20071230</enddate><creator>Gyasi-Agyei, Yeboah</creator><creator>Mahbub, S.M. Parvez Bin</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20071230</creationdate><title>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</title><author>Gyasi-Agyei, Yeboah ; Mahbub, S.M. Parvez Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Capping</topic><topic>Disaggregation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Parameter uncertainty</topic><topic>Rainfall</topic><topic>Regionalisation</topic><topic>Stochastic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyasi-Agyei, Yeboah</creatorcontrib><creatorcontrib>Mahbub, S.M. Parvez Bin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyasi-Agyei, Yeboah</au><au>Mahbub, S.M. Parvez Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A stochastic model for daily rainfall disaggregation into fine time scale for a large region</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2007-12-30</date><risdate>2007</risdate><volume>347</volume><issue>3</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>A robust model for disaggregation of daily rainfall data at a point within a large region to any fine timescale of choice is presented. Limited fine timescale data are required to calibrate only three parameters for the regional model, to establish monthly variation of simulation timescale lag-1 autocorrelations, and also to establish a scaling law between the simulation timescale and the 24-h aggregation levels. Site specific parameters are obtained using the 24-h statistics to disaggregate a long record of daily data by repetition and proportional adjusting techniques with capping. An Australia-wide data set has been used as a case study to illustrate the capability of the model. It has been demonstrated that the disaggregation model predicts very well the gross statistics (including extreme values) of rainfall time series down to 6-min timescale. The possibility of linking the disaggregation model to daily, or global circulation, models that can capture the inter-annual variability of the rainfall process for simulation beyond the number of years of record is being explored.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2007.09.047</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2007-12, Vol.347 (3), p.358-370 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_20690280 |
source | ScienceDirect Freedom Collection |
subjects | Capping Disaggregation Earth sciences Earth, ocean, space Exact sciences and technology Hydrology Hydrology. Hydrogeology Parameter uncertainty Rainfall Regionalisation Stochastic |
title | A stochastic model for daily rainfall disaggregation into fine time scale for a large region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20stochastic%20model%20for%20daily%20rainfall%20disaggregation%20into%20fine%20time%20scale%20for%20a%20large%20region&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gyasi-Agyei,%20Yeboah&rft.date=2007-12-30&rft.volume=347&rft.issue=3&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2007.09.047&rft_dat=%3Cproquest_cross%3E20690280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-9fed7e6e1ed930d547efd1ece07602204e9ccf9a49099ea3c4640bb1597248a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20690280&rft_id=info:pmid/&rfr_iscdi=true |