Loading…

Characterization, identification of road dust PAHs in central Shanghai areas, China

Road dust samples were collected from central Shanghai in winter (January) and summer (August), respectively. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority-controlled list were determined by GC/MS. Total PAH (t-PAH) concentratio...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment (1994) 2007-12, Vol.41 (38), p.8785-8795
Main Authors: Liu, M., Cheng, S.B., Ou, D.N., Hou, L.J., Gao, L., Wang, L.L., Xie, Y.S., Yang, Y., Xu, S.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Road dust samples were collected from central Shanghai in winter (January) and summer (August), respectively. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority-controlled list were determined by GC/MS. Total PAH (t-PAH) concentrations in winter samples ranged from 9176 to 32,573 ng g −1 with a mean value of 20,648 ng g −1, while they varied from 6875 to 27,766 ng g −1 in summer with an average of 14,098 ng g −1. Spatial variation showed that city park (CP) samples had the lowest t-PAH concentration, while industrial area (ID) and traffic area (TR) and commercial area (CO) were the most polluted, in both seasons. PAH homologues concentrations were getting higher with the more rings and higher molecular weight (HMW) in all areas. The study of effective factors showed that grain size was only a minor factor influencing the accumulation of PAHs, whereas total organic carbon (TOC) was found to be closely correlated with t-PAH concentration. Prevailing winds could directly affect on the spatial distribution of PAHs. Chemical source apportionment studies took the form of principal component analysis (PCA), followed by compositional analysis. It was demonstrated that road dust PAHs in central Shanghai mainly came from the mixing of traffic and coal combustion. The contribution percentages of pyrogenic and petrogenic sources were respectively 71.0% and 11.4% in winter, while they were, 64.9% and 14.1% in summer, respectively. Road dust PAHs in Shanghai city mostly came from local sources.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2007.07.059