Loading…
SETTING SAFE ACUTE EXPOSURE LIMITS FOR HALON REPLACEMENT CHEMICALS USING PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING
Most proposed replacements for Halon 1301 as a fire suppressant are halogenated hydrocarbons. The acute toxic endpoint of concern for these agents is cardiac sensitization. An approach is described that links the cardiac endpoint as assessed in dogs to a target arterial concentration in humans. Link...
Saved in:
Published in: | Inhalation toxicology 2000-08, Vol.12 (8), p.751-763 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Most proposed replacements for Halon 1301 as a fire suppressant are halogenated hydrocarbons. The acute toxic endpoint of concern for these agents is cardiac sensitization. An approach is described that links the cardiac endpoint as assessed in dogs to a target arterial concentration in humans. Linkage was made using a physiologically based pharmacokinetic (PBPK) model. Monte Carlo simulations, which account for population variability, were used to establish safe exposure times at different exposure concentrations for Halon 1301 (bromotrifluoromethane), CF3I (trifluoroiodomethane), HFC-125 (pentafluoroethane), HFC-227ea (1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (1,1,1,3,3,3- hexafluoropropane). Application of the modeling technique described here not only |
---|---|
ISSN: | 0895-8378 1091-7691 |
DOI: | 10.1080/08958370050085174 |