Loading…

NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries

Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity dec...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-08, Vol.12 (8), p.8277-8287
Main Authors: Dong, Caifu, Liang, Jianwen, He, Yanyan, Li, Chuanchuan, Chen, Xiaoxia, Guo, Lijun, Tian, Fang, Qian, Yitai, Xu, Liqiang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8287
container_issue 8
container_start_page 8277
container_title ACS nano
container_volume 12
creator Dong, Caifu
Liang, Jianwen
He, Yanyan
Li, Chuanchuan
Chen, Xiaoxia
Guo, Lijun
Tian, Fang
Qian, Yitai
Xu, Liqiang
description Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe­(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.
doi_str_mv 10.1021/acsnano.8b03541
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2070246190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070246190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfPvuZRkG750abtow7nBlPBKvgWLm26dWRJbVpk_72ZG97Lfbn73HH3ReiWkgkljE6h9Basm2SK8CSmZ2hEcy4ikomv83-d0Et05f2WkCTNUjFC-9emoBPC8cIZ435w0W50pz0GW-EZrA_K42Jodbdp1hv8Dr0O9RbKpt__QUUPymj8YF2l8Utodw0Yj2vX4QWYejofjMGFq5phFy2dxY_QHxjtr9FFHUh9c8pj9Dl_-pgtotXb83L2sIqAsbiPuKqp4rVOK0ZqxhKlk5TmkIaoFdCSK1HGiRI8jqs8zcoy_AiVFrkIY1QpPkZ3x71t574H7Xu5a3ypjQGr3eAlIylhsaA5Cej9EQ1eyq0bOhsOk5TIg8HyZLA8Gcx_AX37b7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070246190</pqid></control><display><type>article</type><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</creator><creatorcontrib>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</creatorcontrib><description>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe­(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03541</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-08, Vol.12 (8), p.8277-8287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0453-120X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dong, Caifu</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Xiaoxia</creatorcontrib><creatorcontrib>Guo, Lijun</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe­(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKfPvuZRkG750abtow7nBlPBKvgWLm26dWRJbVpk_72ZG97Lfbn73HH3ReiWkgkljE6h9Basm2SK8CSmZ2hEcy4ikomv83-d0Et05f2WkCTNUjFC-9emoBPC8cIZ435w0W50pz0GW-EZrA_K42Jodbdp1hv8Dr0O9RbKpt__QUUPymj8YF2l8Utodw0Yj2vX4QWYejofjMGFq5phFy2dxY_QHxjtr9FFHUh9c8pj9Dl_-pgtotXb83L2sIqAsbiPuKqp4rVOK0ZqxhKlk5TmkIaoFdCSK1HGiRI8jqs8zcoy_AiVFrkIY1QpPkZ3x71t574H7Xu5a3ypjQGr3eAlIylhsaA5Cej9EQ1eyq0bOhsOk5TIg8HyZLA8Gcx_AX37b7s</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Dong, Caifu</creator><creator>Liang, Jianwen</creator><creator>He, Yanyan</creator><creator>Li, Chuanchuan</creator><creator>Chen, Xiaoxia</creator><creator>Guo, Lijun</creator><creator>Tian, Fang</creator><creator>Qian, Yitai</creator><creator>Xu, Liqiang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></search><sort><creationdate>20180828</creationdate><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><author>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Caifu</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Xiaoxia</creatorcontrib><creatorcontrib>Guo, Lijun</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Caifu</au><au>Liang, Jianwen</au><au>He, Yanyan</au><au>Li, Chuanchuan</au><au>Chen, Xiaoxia</au><au>Guo, Lijun</au><au>Tian, Fang</au><au>Qian, Yitai</au><au>Xu, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>8277</spage><epage>8287</epage><pages>8277-8287</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe­(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b03541</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-08, Vol.12 (8), p.8277-8287
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2070246190
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NiS1.03%20Hollow%20Spheres%20and%20Cages%20as%20Superhigh%20Rate%20Capacity%20and%20Stable%20Anode%20Materials%20for%20Half/Full%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20nano&rft.au=Dong,%20Caifu&rft.date=2018-08-28&rft.volume=12&rft.issue=8&rft.spage=8277&rft.epage=8287&rft.pages=8277-8287&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03541&rft_dat=%3Cproquest_acs_j%3E2070246190%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2070246190&rft_id=info:pmid/&rfr_iscdi=true