Loading…
NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries
Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity dec...
Saved in:
Published in: | ACS nano 2018-08, Vol.12 (8), p.8277-8287 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8287 |
container_issue | 8 |
container_start_page | 8277 |
container_title | ACS nano |
container_volume | 12 |
creator | Dong, Caifu Liang, Jianwen He, Yanyan Li, Chuanchuan Chen, Xiaoxia Guo, Lijun Tian, Fang Qian, Yitai Xu, Liqiang |
description | Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs. |
doi_str_mv | 10.1021/acsnano.8b03541 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2070246190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070246190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfPvuZRkG750abtow7nBlPBKvgWLm26dWRJbVpk_72ZG97Lfbn73HH3ReiWkgkljE6h9Basm2SK8CSmZ2hEcy4ikomv83-d0Et05f2WkCTNUjFC-9emoBPC8cIZ435w0W50pz0GW-EZrA_K42Jodbdp1hv8Dr0O9RbKpt__QUUPymj8YF2l8Utodw0Yj2vX4QWYejofjMGFq5phFy2dxY_QHxjtr9FFHUh9c8pj9Dl_-pgtotXb83L2sIqAsbiPuKqp4rVOK0ZqxhKlk5TmkIaoFdCSK1HGiRI8jqs8zcoy_AiVFrkIY1QpPkZ3x71t574H7Xu5a3ypjQGr3eAlIylhsaA5Cej9EQ1eyq0bOhsOk5TIg8HyZLA8Gcx_AX37b7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070246190</pqid></control><display><type>article</type><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</creator><creatorcontrib>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</creatorcontrib><description>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b03541</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-08, Vol.12 (8), p.8277-8287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0453-120X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dong, Caifu</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Xiaoxia</creatorcontrib><creatorcontrib>Guo, Lijun</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKfPvuZRkG750abtow7nBlPBKvgWLm26dWRJbVpk_72ZG97Lfbn73HH3ReiWkgkljE6h9Basm2SK8CSmZ2hEcy4ikomv83-d0Et05f2WkCTNUjFC-9emoBPC8cIZ435w0W50pz0GW-EZrA_K42Jodbdp1hv8Dr0O9RbKpt__QUUPymj8YF2l8Utodw0Yj2vX4QWYejofjMGFq5phFy2dxY_QHxjtr9FFHUh9c8pj9Dl_-pgtotXb83L2sIqAsbiPuKqp4rVOK0ZqxhKlk5TmkIaoFdCSK1HGiRI8jqs8zcoy_AiVFrkIY1QpPkZ3x71t574H7Xu5a3ypjQGr3eAlIylhsaA5Cej9EQ1eyq0bOhsOk5TIg8HyZLA8Gcx_AX37b7s</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Dong, Caifu</creator><creator>Liang, Jianwen</creator><creator>He, Yanyan</creator><creator>Li, Chuanchuan</creator><creator>Chen, Xiaoxia</creator><creator>Guo, Lijun</creator><creator>Tian, Fang</creator><creator>Qian, Yitai</creator><creator>Xu, Liqiang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></search><sort><creationdate>20180828</creationdate><title>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</title><author>Dong, Caifu ; Liang, Jianwen ; He, Yanyan ; Li, Chuanchuan ; Chen, Xiaoxia ; Guo, Lijun ; Tian, Fang ; Qian, Yitai ; Xu, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Caifu</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Li, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Xiaoxia</creatorcontrib><creatorcontrib>Guo, Lijun</creatorcontrib><creatorcontrib>Tian, Fang</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><creatorcontrib>Xu, Liqiang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Caifu</au><au>Liang, Jianwen</au><au>He, Yanyan</au><au>Li, Chuanchuan</au><au>Chen, Xiaoxia</au><au>Guo, Lijun</au><au>Tian, Fang</au><au>Qian, Yitai</au><au>Xu, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>12</volume><issue>8</issue><spage>8277</spage><epage>8287</epage><pages>8277-8287</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nickle sulfides as promising anode materials for sodium-ion batteries have attracted tremendous attention owing to their large specific capacity and good electrical conductivity. However, the relative large volume changes during the sodiation/desodiation process usually result in a fast capacity decay, poor cycling stability, and sluggish electrode kinetics which hinder their practical applications. Herein, NiS1.03 porous hollow spheres (NiS1.03 PHSs) and porous NiS1.03 hollow cages (NiS1.03 PHCs) with high yield are designed and selectively fabricated via a simple solvothermal and subsequent annealing approach. The obtained NiS1.03 PHSs display long-term cycling stability (127 mAh g–1 after 6000 cycles at 8 A g–1) and excellent rate performance (605 mAh g–1 at 1 A g–1 and 175 mAh g–1 at 15 A g–1). NiS1.03 PHCs also show high rate capability and outstanding cycling stability. In addition, the analyses results of in situ and ex situ XRD patterns and HRTEM images reveal the reversible Na-ion conversion mechanism of NiS1.03. It is also worth noting that the NiS1.03 PHSs//FeFe(CN)6 full cell is successfully assembled and exhibits an initial reversible capacity of 460 mAh g–1 at 0.5 A g–1, which further evidence that NiS1.03 is a kind of prospective anode material for SIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.8b03541</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0453-120X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-08, Vol.12 (8), p.8277-8287 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2070246190 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | NiS1.03 Hollow Spheres and Cages as Superhigh Rate Capacity and Stable Anode Materials for Half/Full Sodium-Ion Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NiS1.03%20Hollow%20Spheres%20and%20Cages%20as%20Superhigh%20Rate%20Capacity%20and%20Stable%20Anode%20Materials%20for%20Half/Full%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20nano&rft.au=Dong,%20Caifu&rft.date=2018-08-28&rft.volume=12&rft.issue=8&rft.spage=8277&rft.epage=8287&rft.pages=8277-8287&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b03541&rft_dat=%3Cproquest_acs_j%3E2070246190%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a224t-3bf1b3fe7d20f225be5719a7777fba1c3b6c45b6344d978cc851ade6961b31bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2070246190&rft_id=info:pmid/&rfr_iscdi=true |