Loading…
Vacuum Ultraviolet Laser Desorption/Ionization Mass Spectrometry Imaging of Single Cells with Submicron Craters
Mass spectrometry imaging (MSI) is a crucial label-free method to distinguish the localization patterns in single cells. MALDI-TOF MS and ToF-SIMS are now bearing the responsibility. However, MALDI-TOF MS is limited to micron spatial resolution and ToF-SIMS suffers from severe molecular fragmentatio...
Saved in:
Published in: | Analytical chemistry (Washington) 2018-08, Vol.90 (16), p.10009-10015 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mass spectrometry imaging (MSI) is a crucial label-free method to distinguish the localization patterns in single cells. MALDI-TOF MS and ToF-SIMS are now bearing the responsibility. However, MALDI-TOF MS is limited to micron spatial resolution and ToF-SIMS suffers from severe molecular fragmentation. Here, we proposed a new MSI methodology of vacuum ultraviolet laser desorption/ionization (VUVDI) with high spatial resolution, achieving higher ion yields and less fragmentation compared with ToF-SIMS at submicron level. The fluorescence image and mass spectrum of VUVDI were obtained simultaneously. In addition, the adjustable laser fluence acquired selective detection for different molecular and fragmental ions, thus realizing molecular identification. Furthermore, MSIs of single cells with submicron craters were presented. These results suggest VUVDI is a potential mass spectrometry method that provides a soft ionization source and submicron spatial resolution for molecular analysis in life science. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b02478 |