Loading…
Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high-salt stress
In this study, we characterized a novel soybean gene encoding a neutral PR-5 protein and compared it to two acidic isoforms of soybean PR-5 protein. This gene, designated as Glycine max osmotin-like protein, b isoform ( GmOLPb, accession no. AB370233), encoded a putative protein having the greatest...
Saved in:
Published in: | Plant physiology and biochemistry 2009, Vol.47 (1), p.73-79 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we characterized a novel soybean gene encoding a neutral PR-5 protein and compared it to two acidic isoforms of soybean PR-5 protein. This gene, designated as
Glycine max osmotin-like protein, b isoform (
GmOLPb, accession no.
AB370233), encoded a putative protein having the greatest similarity to chickpea PR-5b (89% identity). Unlike the two acidic PR-5, GmOLPa and P21, the protein had a C-terminal elongation responsible for possible vacuolar targeting and after maturation showed a calculated molecular mass of 21.9
kDa with p
I 6.0. The 3D models, predicted by the homology modeling, contained four α-helixes and 16 β-strands and formed three characteristic domains. The two acidic PR-5 proteins also showed a 3D structure very similar to GmOLPb, although the electrostatic potential on molecular surface of each PR-5 was significantly different. In the study of the gene expression under conditions of high-salt stress,
GmOLPb was highly induced in the leaves of the soybean, particularly in the lower part of a leaf. The expression started at 2
h after initiation of the stress and was highly induced between 18–72
h. Gene expression of
P21e (protein homologous to P21) was transiently induced by high-salt stress, but took place earlier than the gene expressions of
GmOLPa and
GmOLPb. Such differential expression was observed also under investigation with methyl jasmonate and salicylic acid. These results suggested that each soybean PR-5 might play a distinctive role in the defensive system protecting the soybean plant against high-salt stress, particularly in the leaves of the soybean. |
---|---|
ISSN: | 0981-9428 1873-2690 |
DOI: | 10.1016/j.plaphy.2008.09.012 |