Loading…

key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes

We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: Čertovo jezero (CT), Prášilské jezero (PR), and Plešné jezero (PL) in the Bo...

Full description

Saved in:
Bibliographic Details
Published in:Biológia 2006-01, Vol.61 (20), p.S441-S451
Main Authors: Vrba, Jaroslav, Jiří Kopáček, Thomas Bittl, Jiří Nedoma, Alena Å trojsovÃ, Linda NedbalovÃ, LeoÅ¡ Kohout, Jan Fott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423
cites cdi_FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423
container_end_page S451
container_issue 20
container_start_page S441
container_title Biológia
container_volume 61
creator Vrba, Jaroslav
Jiří Kopáček
Thomas Bittl
Jiří Nedoma
Alena Å trojsovÃ
Linda NedbalovÃ
Leoš Kohout
Jan Fott
description We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: Čertovo jezero (CT), Prášilské jezero (PR), and Plešné jezero (PL) in the Bohemian Forest (Šumava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L−1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L−1) was about five times higher than in CT and PR (3.9 and 5.1 µg L−1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L−1) was, however, only ∼2-times higher than in CT and PR (235 and 272 µg C L−1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L−1 h−1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH < 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.
doi_str_mv 10.2478/s11756-007-0077-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20791832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664863760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423</originalsourceid><addsrcrecordid>eNp1kUtr3TAQhU1poGnSH9BVBYWu4kaSZUl3GUL6gEAXSdZirMetcmXrVrJ68b-vjAsthS4OM4vvnBk4TfOW4I-UCXmdCRE9bzEWq0Tbv2jOSdfxdtfz7uVf-6vmdc7PGDPRY3LenA52QSkGi6JDEMroJ19G5Cd0_B5zVSoZwU_wAQYf_LxcIRejQSc7oDynoueS7BWCyaBjgOkwxwmZZYLR67ymVCZO-7Ag0N54561BAQ42XzZnDkK2b37Pi-bp093j7Zf2_tvnr7c3963uJJ9bIjDDhuneEScHaQ3HdmAOpJA9t8YCN1qAAKflwAcqid4NwmDuqARGGO0umg9b7jHFH8XmWY0-axvqrzaWrCgWOyK7FXz_D_gcS5rqb4pyziTvBMeVIhulU8w5WaeOyY-QFkWwWotQWxGqlrBKqL56bjbPCcJsk7H7VJa6_DnwXy8nFD8wRmrGuy3DQVSwTz6rpweKCceYYsqJ6H4B0n2bgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664863760</pqid></control><display><type>article</type><title>key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes</title><source>Springer Nature</source><creator>Vrba, Jaroslav ; Jiří Kopáček ; Thomas Bittl ; Jiří Nedoma ; Alena Å trojsovà ; Linda Nedbalovà ; LeoÅ¡ Kohout ; Jan Fott</creator><creatorcontrib>Vrba, Jaroslav ; Jiří Kopáček ; Thomas Bittl ; Jiří Nedoma ; Alena Å trojsovà ; Linda Nedbalovà ; LeoÅ¡ Kohout ; Jan Fott</creatorcontrib><description>We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: Čertovo jezero (CT), Prášilské jezero (PR), and PleÅ¡né jezero (PL) in the Bohemian Forest (Å umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L−1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L−1) was about five times higher than in CT and PR (3.9 and 5.1 µg L−1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L−1) was, however, only ∼2-times higher than in CT and PR (235 and 272 µg C L−1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L−1 h−1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH &lt; 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.</description><identifier>ISSN: 1336-9563</identifier><identifier>ISSN: 0006-3088</identifier><identifier>EISSN: 1336-9563</identifier><identifier>DOI: 10.2478/s11756-007-0077-5</identifier><language>eng</language><publisher>Heidelberg: Versita</publisher><subject>Acid phosphatase ; Acidification ; Aluminum ; Availability ; bacterioplankton ; Biomass ; carbon biomass ; Composition ; Crustacea ; Crustaceans ; Dynamic structural analysis ; extracellular phosphatases ; Food availability ; Food chains ; Food webs ; forests ; Freshwater ; hydrochemistry ; Inactivation ; Lakes ; Microorganisms ; Mountain forests ; Mountains ; pH effects ; Phosphatase ; Phosphorus ; Phytoplankton ; Plankton ; plankton stoichiometry ; recovery ; Seston ; Speciation ; Zooplankton</subject><ispartof>Biológia, 2006-01, Vol.61 (20), p.S441-S451</ispartof><rights>Institute of Zoology, Slovak Academy of Sciences 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423</citedby><cites>FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Vrba, Jaroslav</creatorcontrib><creatorcontrib>Jiří Kopáček</creatorcontrib><creatorcontrib>Thomas Bittl</creatorcontrib><creatorcontrib>Jiří Nedoma</creatorcontrib><creatorcontrib>Alena Å trojsovÃ</creatorcontrib><creatorcontrib>Linda NedbalovÃ</creatorcontrib><creatorcontrib>LeoÅ¡ Kohout</creatorcontrib><creatorcontrib>Jan Fott</creatorcontrib><title>key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes</title><title>Biológia</title><description>We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: Čertovo jezero (CT), Prášilské jezero (PR), and PleÅ¡né jezero (PL) in the Bohemian Forest (Å umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L−1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L−1) was about five times higher than in CT and PR (3.9 and 5.1 µg L−1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L−1) was, however, only ∼2-times higher than in CT and PR (235 and 272 µg C L−1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L−1 h−1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH &lt; 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.</description><subject>Acid phosphatase</subject><subject>Acidification</subject><subject>Aluminum</subject><subject>Availability</subject><subject>bacterioplankton</subject><subject>Biomass</subject><subject>carbon biomass</subject><subject>Composition</subject><subject>Crustacea</subject><subject>Crustaceans</subject><subject>Dynamic structural analysis</subject><subject>extracellular phosphatases</subject><subject>Food availability</subject><subject>Food chains</subject><subject>Food webs</subject><subject>forests</subject><subject>Freshwater</subject><subject>hydrochemistry</subject><subject>Inactivation</subject><subject>Lakes</subject><subject>Microorganisms</subject><subject>Mountain forests</subject><subject>Mountains</subject><subject>pH effects</subject><subject>Phosphatase</subject><subject>Phosphorus</subject><subject>Phytoplankton</subject><subject>Plankton</subject><subject>plankton stoichiometry</subject><subject>recovery</subject><subject>Seston</subject><subject>Speciation</subject><subject>Zooplankton</subject><issn>1336-9563</issn><issn>0006-3088</issn><issn>1336-9563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kUtr3TAQhU1poGnSH9BVBYWu4kaSZUl3GUL6gEAXSdZirMetcmXrVrJ68b-vjAsthS4OM4vvnBk4TfOW4I-UCXmdCRE9bzEWq0Tbv2jOSdfxdtfz7uVf-6vmdc7PGDPRY3LenA52QSkGi6JDEMroJ19G5Cd0_B5zVSoZwU_wAQYf_LxcIRejQSc7oDynoueS7BWCyaBjgOkwxwmZZYLR67ymVCZO-7Ag0N54561BAQ42XzZnDkK2b37Pi-bp093j7Zf2_tvnr7c3963uJJ9bIjDDhuneEScHaQ3HdmAOpJA9t8YCN1qAAKflwAcqid4NwmDuqARGGO0umg9b7jHFH8XmWY0-axvqrzaWrCgWOyK7FXz_D_gcS5rqb4pyziTvBMeVIhulU8w5WaeOyY-QFkWwWotQWxGqlrBKqL56bjbPCcJsk7H7VJa6_DnwXy8nFD8wRmrGuy3DQVSwTz6rpweKCceYYsqJ6H4B0n2bgw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Vrba, Jaroslav</creator><creator>Jiří Kopáček</creator><creator>Thomas Bittl</creator><creator>Jiří Nedoma</creator><creator>Alena Å trojsovÃ</creator><creator>Linda NedbalovÃ</creator><creator>LeoÅ¡ Kohout</creator><creator>Jan Fott</creator><general>Versita</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20060101</creationdate><title>key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes</title><author>Vrba, Jaroslav ; Jiří Kopáček ; Thomas Bittl ; Jiří Nedoma ; Alena Å trojsovà ; Linda Nedbalovà ; LeoÅ¡ Kohout ; Jan Fott</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acid phosphatase</topic><topic>Acidification</topic><topic>Aluminum</topic><topic>Availability</topic><topic>bacterioplankton</topic><topic>Biomass</topic><topic>carbon biomass</topic><topic>Composition</topic><topic>Crustacea</topic><topic>Crustaceans</topic><topic>Dynamic structural analysis</topic><topic>extracellular phosphatases</topic><topic>Food availability</topic><topic>Food chains</topic><topic>Food webs</topic><topic>forests</topic><topic>Freshwater</topic><topic>hydrochemistry</topic><topic>Inactivation</topic><topic>Lakes</topic><topic>Microorganisms</topic><topic>Mountain forests</topic><topic>Mountains</topic><topic>pH effects</topic><topic>Phosphatase</topic><topic>Phosphorus</topic><topic>Phytoplankton</topic><topic>Plankton</topic><topic>plankton stoichiometry</topic><topic>recovery</topic><topic>Seston</topic><topic>Speciation</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrba, Jaroslav</creatorcontrib><creatorcontrib>Jiří Kopáček</creatorcontrib><creatorcontrib>Thomas Bittl</creatorcontrib><creatorcontrib>Jiří Nedoma</creatorcontrib><creatorcontrib>Alena Å trojsovÃ</creatorcontrib><creatorcontrib>Linda NedbalovÃ</creatorcontrib><creatorcontrib>LeoÅ¡ Kohout</creatorcontrib><creatorcontrib>Jan Fott</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Biológia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrba, Jaroslav</au><au>Jiří Kopáček</au><au>Thomas Bittl</au><au>Jiří Nedoma</au><au>Alena Å trojsovÃ</au><au>Linda NedbalovÃ</au><au>LeoÅ¡ Kohout</au><au>Jan Fott</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes</atitle><jtitle>Biológia</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>61</volume><issue>20</issue><spage>S441</spage><epage>S451</epage><pages>S441-S451</pages><issn>1336-9563</issn><issn>0006-3088</issn><eissn>1336-9563</eissn><abstract>We studied extracellular acid phosphatase activity (AcPA) of planktonic microorganisms, aluminium (Al) speciation, and phosphorus (P) cycling in three atmospherically acidified (pH of 4.5–5.1) mountain forest lakes: Čertovo jezero (CT), Prášilské jezero (PR), and PleÅ¡né jezero (PL) in the Bohemian Forest (Å umava, Böhmerwald). Microorganisms dominated pelagic food webs of the lakes and crustacean zooplankton were important only in PR, with the lowest Al concentrations (193 µg L−1) due to 3–4 times lower terrestrial input. The lakes differed substantially in Al speciation, i.e., in the proportion of ionic and particulate forms, with the highest proportion of ionic Al in the most acid CT (pH = 4.5). The P concentration in the inlet of PL (mean: 22.9 µg L−1) was about five times higher than in CT and PR (3.9 and 5.1 µg L−1, respectively). Average total biomass of planktonic microorganisms in PL (593 µg C L−1) was, however, only ∼2-times higher than in CT and PR (235 and 272 µg C L−1, respectively). Enormous AcPA (means: 2.17–6.82 µmol L−1 h−1) and high planktonic C : P ratios suggested severe P limitation of the plankton in all lakes. Comparing 1998 and 2003 seasons, we observed changes in water composition (pH and Al speciation) leading to a significant increase in phytoplankton biomass in the lakes. The increase in the seston C : P ratio during the same time, however, indicates a progressive P deficiency of the lakes. The terrestrial Al inputs, together with in-lake processes controlling the formation of particulate Al, reduced P availability for planktonic microorganisms and were responsible for the differences in AcPA. At pH &lt; 5, moreover, ionic Al forms caused inhibition of extracellular phosphatases. We postulate that both particulate and ionic Al forms affect P availability (i.e., inhibition of extracellular phosphatases and inactivation of P), specifically shape the plankton composition in the lakes and affect plankton recovery from the acid stress.</abstract><cop>Heidelberg</cop><pub>Versita</pub><doi>10.2478/s11756-007-0077-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1336-9563
ispartof Biológia, 2006-01, Vol.61 (20), p.S441-S451
issn 1336-9563
0006-3088
1336-9563
language eng
recordid cdi_proquest_miscellaneous_20791832
source Springer Nature
subjects Acid phosphatase
Acidification
Aluminum
Availability
bacterioplankton
Biomass
carbon biomass
Composition
Crustacea
Crustaceans
Dynamic structural analysis
extracellular phosphatases
Food availability
Food chains
Food webs
forests
Freshwater
hydrochemistry
Inactivation
Lakes
Microorganisms
Mountain forests
Mountains
pH effects
Phosphatase
Phosphorus
Phytoplankton
Plankton
plankton stoichiometry
recovery
Seston
Speciation
Zooplankton
title key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=key%20role%20of%20aluminium%20in%20phosphorus%20availability,%20food%20web%20structure,%20and%20plankton%20dynamics%20in%20strongly%20acidified%20lakes&rft.jtitle=Biolo%CC%81gia&rft.au=Vrba,%20Jaroslav&rft.date=2006-01-01&rft.volume=61&rft.issue=20&rft.spage=S441&rft.epage=S451&rft.pages=S441-S451&rft.issn=1336-9563&rft.eissn=1336-9563&rft_id=info:doi/10.2478/s11756-007-0077-5&rft_dat=%3Cproquest_cross%3E2664863760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-17040d4c5f1f8b8ed60eb4fa87856edea6dc7a7afc8b6b281c9b7d06f28a41423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664863760&rft_id=info:pmid/&rfr_iscdi=true