Loading…
Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens: Signature Development and Evaluation
An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without th...
Saved in:
Published in: | Analytical chemistry (Washington) 2007-04, Vol.79 (7), p.2658-2673 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optical detection method, Raman chemical imaging spectroscopy (RCIS), is reported, which combines Raman spectroscopy, fluorescence spectroscopy, and digital imaging. Using this method, trace levels of biothreat organisms are detected in the presence of complex environmental backgrounds without the use of amplification or enhancement techniques. RCIS is reliant upon the use of Raman signatures and automated recognition algorithms to perform species-level identification. The rationale and steps for constructing a pathogen Raman signature library are described, as well as the first reported Raman spectra from live, priority pathogens, including Bacillus anthracis, Yersinia pestis, Burkholderia mallei, Francisella tularensis, Brucella abortus, and ricin. Results from a government-managed blind trial evaluation of the signature library demonstrated excellent specificity under controlled laboratory conditions. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac0700575 |