Loading…
Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction
Contact skin temperature ( T sk ) sensors are calibrated under uniform thermal conditions but used in the presence of a skin-to-environment temperature gradient. We aimed to characterise the validity of contact T sk sensors when measuring surface temperature under a range of environmental and fabric...
Saved in:
Published in: | International journal of biometeorology 2018-10, Vol.62 (10), p.1861-1872 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153 |
container_end_page | 1872 |
container_issue | 10 |
container_start_page | 1861 |
container_title | International journal of biometeorology |
container_volume | 62 |
creator | MacRae, Braid A. Annaheim, Simon Stämpfli, Rolf Spengler, Christina M. Rossi, René M. |
description | Contact skin temperature (
T
sk
) sensors are calibrated under uniform thermal conditions but used in the presence of a skin-to-environment temperature gradient. We aimed to characterise the validity of contact
T
sk
sensors when measuring surface temperature under a range of environmental and fabric coverage conditions, to estimate practical temperature limits for a given measurement bias and to explore correcting for bias. Using two types of contact
T
sk
sensors (thermistors,
n
= 5; iButtons,
n
= 5), we performed experiments in three phases: (1) conventional calibration (uniform thermal environment) over 15–40 °C in 5 °C steps (at
t
= 0, and 24 h, 12 weeks later), (2) surface temperature measurements of a purpose-made aluminium plate (also 15–40 °C) at different environmental temperatures (15, 25, 35 °C) with different sensor attachments and fabric coverings to assess measurement bias and calculate correction factors that account for the next-to-surface microclimate temperature and (3) surface measurements (33.1 °C in 20 °C environment) for assessing generated corrections. The main results were as follows: (1) after initial calibration,
T
sk
sensors were valid under uniform thermal conditions [mean bias |
doi_str_mv | 10.1007/s00484-018-1589-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2080827473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2080827473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153</originalsourceid><addsrcrecordid>eNp1kc1uFiEUhomxsZ_VC3BjSNy4GXtgmIFxZxr_kibdNG4nDBxa6gx8AlPTK_F2ZfpVTUy64hCe5z0kLyGvGLxjAPI0AwglGmCqYZ0aGnhCdky0vGG8E0_JDoBDIxlXx-R5zjdQHdXLZ-S4Beh5z2BHfn3Ts7e-3NHoqImhaFNo_u4DLbjsMemyJqQZQ44p0zVYTNR65zBhKBTDrU8xLHXW86bXJB9Dpj99uaY62PshroU6PSVvKnJbM6_wPTXXOtVdmHzWm3NPm5gSmu36ghw5PWd8-XCekMtPHy_PvjTnF5-_nn04b4zgUBpptGkFqmnqOVdOOWuk7iyIFgeJfTvwHpzuUQx86PTAJssks33vmFMt69oT8vYQu0_xx4q5jIvPBudZB4xrHjkoUFwK2Vb0zX_oTVxTqJ-rlBw6ppgaKsUOlEkx54Ru3Ce_6HQ3Mhi30sZDaWMtbdxKG6E6rx-S12lB-9f401IF-AHI9SlcYfq3-vHU3y1KpZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079518189</pqid></control><display><type>article</type><title>Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction</title><source>Springer Nature</source><creator>MacRae, Braid A. ; Annaheim, Simon ; Stämpfli, Rolf ; Spengler, Christina M. ; Rossi, René M.</creator><creatorcontrib>MacRae, Braid A. ; Annaheim, Simon ; Stämpfli, Rolf ; Spengler, Christina M. ; Rossi, René M.</creatorcontrib><description>Contact skin temperature (
T
sk
) sensors are calibrated under uniform thermal conditions but used in the presence of a skin-to-environment temperature gradient. We aimed to characterise the validity of contact
T
sk
sensors when measuring surface temperature under a range of environmental and fabric coverage conditions, to estimate practical temperature limits for a given measurement bias and to explore correcting for bias. Using two types of contact
T
sk
sensors (thermistors,
n
= 5; iButtons,
n
= 5), we performed experiments in three phases: (1) conventional calibration (uniform thermal environment) over 15–40 °C in 5 °C steps (at
t
= 0, and 24 h, 12 weeks later), (2) surface temperature measurements of a purpose-made aluminium plate (also 15–40 °C) at different environmental temperatures (15, 25, 35 °C) with different sensor attachments and fabric coverings to assess measurement bias and calculate correction factors that account for the next-to-surface microclimate temperature and (3) surface measurements (33.1 °C in 20 °C environment) for assessing generated corrections. The main results were as follows: (1) after initial calibration,
T
sk
sensors were valid under uniform thermal conditions [mean bias < 0.05 °C, typical error of the estimate < 0.1 °C]. (2) For the surface measurements, bias increased with increasing surface-to-microclimate temperature difference for both sensor types. The range of surface temperatures possible to remain within given bias limits could be estimated for the various conditions. (3) For a given measurement, using corrections encompassing the microclimate temperature (mean difference − 0.1 to 0.5 °C) performed better than conventional calibration alone (mean difference − 2.1 to − 0.3 °C). In conclusion, the bias of
T
sk
sensors is influenced by the microclimate temperature and, therefore, body coverings. Where excessive bias is expected, the validity can be improved through sensor and attachment selection and by applying corrections that account for the local temperature gradient.</description><identifier>ISSN: 0020-7128</identifier><identifier>EISSN: 1432-1254</identifier><identifier>DOI: 10.1007/s00484-018-1589-0</identifier><identifier>PMID: 30062610</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Animal Physiology ; Bias ; Biological and Medical Physics ; Biophysics ; Body Temperature ; Calibration ; Coverings ; Earth and Environmental Science ; Environment ; Environmental conditions ; Environmental Health ; Humans ; Meteorology ; Microclimate ; Original Paper ; Plant Physiology ; Sensors ; Skin ; Skin Temperature ; Surface temperature ; Surface temperature measurements ; Temperature ; Temperature effects ; Temperature gradients ; Temperature measurement ; Temperature sensors ; Thermistors ; Validity ; Wearable Electronic Devices - standards</subject><ispartof>International journal of biometeorology, 2018-10, Vol.62 (10), p.1861-1872</ispartof><rights>ISB 2018</rights><rights>International Journal of Biometeorology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153</citedby><cites>FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30062610$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MacRae, Braid A.</creatorcontrib><creatorcontrib>Annaheim, Simon</creatorcontrib><creatorcontrib>Stämpfli, Rolf</creatorcontrib><creatorcontrib>Spengler, Christina M.</creatorcontrib><creatorcontrib>Rossi, René M.</creatorcontrib><title>Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction</title><title>International journal of biometeorology</title><addtitle>Int J Biometeorol</addtitle><addtitle>Int J Biometeorol</addtitle><description>Contact skin temperature (
T
sk
) sensors are calibrated under uniform thermal conditions but used in the presence of a skin-to-environment temperature gradient. We aimed to characterise the validity of contact
T
sk
sensors when measuring surface temperature under a range of environmental and fabric coverage conditions, to estimate practical temperature limits for a given measurement bias and to explore correcting for bias. Using two types of contact
T
sk
sensors (thermistors,
n
= 5; iButtons,
n
= 5), we performed experiments in three phases: (1) conventional calibration (uniform thermal environment) over 15–40 °C in 5 °C steps (at
t
= 0, and 24 h, 12 weeks later), (2) surface temperature measurements of a purpose-made aluminium plate (also 15–40 °C) at different environmental temperatures (15, 25, 35 °C) with different sensor attachments and fabric coverings to assess measurement bias and calculate correction factors that account for the next-to-surface microclimate temperature and (3) surface measurements (33.1 °C in 20 °C environment) for assessing generated corrections. The main results were as follows: (1) after initial calibration,
T
sk
sensors were valid under uniform thermal conditions [mean bias < 0.05 °C, typical error of the estimate < 0.1 °C]. (2) For the surface measurements, bias increased with increasing surface-to-microclimate temperature difference for both sensor types. The range of surface temperatures possible to remain within given bias limits could be estimated for the various conditions. (3) For a given measurement, using corrections encompassing the microclimate temperature (mean difference − 0.1 to 0.5 °C) performed better than conventional calibration alone (mean difference − 2.1 to − 0.3 °C). In conclusion, the bias of
T
sk
sensors is influenced by the microclimate temperature and, therefore, body coverings. Where excessive bias is expected, the validity can be improved through sensor and attachment selection and by applying corrections that account for the local temperature gradient.</description><subject>Aluminum</subject><subject>Animal Physiology</subject><subject>Bias</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Body Temperature</subject><subject>Calibration</subject><subject>Coverings</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental conditions</subject><subject>Environmental Health</subject><subject>Humans</subject><subject>Meteorology</subject><subject>Microclimate</subject><subject>Original Paper</subject><subject>Plant Physiology</subject><subject>Sensors</subject><subject>Skin</subject><subject>Skin Temperature</subject><subject>Surface temperature</subject><subject>Surface temperature measurements</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermistors</subject><subject>Validity</subject><subject>Wearable Electronic Devices - standards</subject><issn>0020-7128</issn><issn>1432-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1uFiEUhomxsZ_VC3BjSNy4GXtgmIFxZxr_kibdNG4nDBxa6gx8AlPTK_F2ZfpVTUy64hCe5z0kLyGvGLxjAPI0AwglGmCqYZ0aGnhCdky0vGG8E0_JDoBDIxlXx-R5zjdQHdXLZ-S4Beh5z2BHfn3Ts7e-3NHoqImhaFNo_u4DLbjsMemyJqQZQ44p0zVYTNR65zBhKBTDrU8xLHXW86bXJB9Dpj99uaY62PshroU6PSVvKnJbM6_wPTXXOtVdmHzWm3NPm5gSmu36ghw5PWd8-XCekMtPHy_PvjTnF5-_nn04b4zgUBpptGkFqmnqOVdOOWuk7iyIFgeJfTvwHpzuUQx86PTAJssks33vmFMt69oT8vYQu0_xx4q5jIvPBudZB4xrHjkoUFwK2Vb0zX_oTVxTqJ-rlBw6ppgaKsUOlEkx54Ru3Ce_6HQ3Mhi30sZDaWMtbdxKG6E6rx-S12lB-9f401IF-AHI9SlcYfq3-vHU3y1KpZg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>MacRae, Braid A.</creator><creator>Annaheim, Simon</creator><creator>Stämpfli, Rolf</creator><creator>Spengler, Christina M.</creator><creator>Rossi, René M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20181001</creationdate><title>Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction</title><author>MacRae, Braid A. ; Annaheim, Simon ; Stämpfli, Rolf ; Spengler, Christina M. ; Rossi, René M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Animal Physiology</topic><topic>Bias</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Body Temperature</topic><topic>Calibration</topic><topic>Coverings</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental conditions</topic><topic>Environmental Health</topic><topic>Humans</topic><topic>Meteorology</topic><topic>Microclimate</topic><topic>Original Paper</topic><topic>Plant Physiology</topic><topic>Sensors</topic><topic>Skin</topic><topic>Skin Temperature</topic><topic>Surface temperature</topic><topic>Surface temperature measurements</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermistors</topic><topic>Validity</topic><topic>Wearable Electronic Devices - standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacRae, Braid A.</creatorcontrib><creatorcontrib>Annaheim, Simon</creatorcontrib><creatorcontrib>Stämpfli, Rolf</creatorcontrib><creatorcontrib>Spengler, Christina M.</creatorcontrib><creatorcontrib>Rossi, René M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacRae, Braid A.</au><au>Annaheim, Simon</au><au>Stämpfli, Rolf</au><au>Spengler, Christina M.</au><au>Rossi, René M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction</atitle><jtitle>International journal of biometeorology</jtitle><stitle>Int J Biometeorol</stitle><addtitle>Int J Biometeorol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>62</volume><issue>10</issue><spage>1861</spage><epage>1872</epage><pages>1861-1872</pages><issn>0020-7128</issn><eissn>1432-1254</eissn><abstract>Contact skin temperature (
T
sk
) sensors are calibrated under uniform thermal conditions but used in the presence of a skin-to-environment temperature gradient. We aimed to characterise the validity of contact
T
sk
sensors when measuring surface temperature under a range of environmental and fabric coverage conditions, to estimate practical temperature limits for a given measurement bias and to explore correcting for bias. Using two types of contact
T
sk
sensors (thermistors,
n
= 5; iButtons,
n
= 5), we performed experiments in three phases: (1) conventional calibration (uniform thermal environment) over 15–40 °C in 5 °C steps (at
t
= 0, and 24 h, 12 weeks later), (2) surface temperature measurements of a purpose-made aluminium plate (also 15–40 °C) at different environmental temperatures (15, 25, 35 °C) with different sensor attachments and fabric coverings to assess measurement bias and calculate correction factors that account for the next-to-surface microclimate temperature and (3) surface measurements (33.1 °C in 20 °C environment) for assessing generated corrections. The main results were as follows: (1) after initial calibration,
T
sk
sensors were valid under uniform thermal conditions [mean bias < 0.05 °C, typical error of the estimate < 0.1 °C]. (2) For the surface measurements, bias increased with increasing surface-to-microclimate temperature difference for both sensor types. The range of surface temperatures possible to remain within given bias limits could be estimated for the various conditions. (3) For a given measurement, using corrections encompassing the microclimate temperature (mean difference − 0.1 to 0.5 °C) performed better than conventional calibration alone (mean difference − 2.1 to − 0.3 °C). In conclusion, the bias of
T
sk
sensors is influenced by the microclimate temperature and, therefore, body coverings. Where excessive bias is expected, the validity can be improved through sensor and attachment selection and by applying corrections that account for the local temperature gradient.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30062610</pmid><doi>10.1007/s00484-018-1589-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7128 |
ispartof | International journal of biometeorology, 2018-10, Vol.62 (10), p.1861-1872 |
issn | 0020-7128 1432-1254 |
language | eng |
recordid | cdi_proquest_miscellaneous_2080827473 |
source | Springer Nature |
subjects | Aluminum Animal Physiology Bias Biological and Medical Physics Biophysics Body Temperature Calibration Coverings Earth and Environmental Science Environment Environmental conditions Environmental Health Humans Meteorology Microclimate Original Paper Plant Physiology Sensors Skin Skin Temperature Surface temperature Surface temperature measurements Temperature Temperature effects Temperature gradients Temperature measurement Temperature sensors Thermistors Validity Wearable Electronic Devices - standards |
title | Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validity%20of%20contact%20skin%20temperature%20sensors%20under%20different%20environmental%20conditions%20with%20and%20without%20fabric%20coverage:%20characterisation%20and%20correction&rft.jtitle=International%20journal%20of%20biometeorology&rft.au=MacRae,%20Braid%20A.&rft.date=2018-10-01&rft.volume=62&rft.issue=10&rft.spage=1861&rft.epage=1872&rft.pages=1861-1872&rft.issn=0020-7128&rft.eissn=1432-1254&rft_id=info:doi/10.1007/s00484-018-1589-0&rft_dat=%3Cproquest_cross%3E2080827473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-7cac34e8bb6228f8fdc7a5d043e97e639260fa6e49295a91bd171d66f1f83153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2079518189&rft_id=info:pmid/30062610&rfr_iscdi=true |