Loading…

Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data

A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for rela...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2008-06, Vol.112 (6), p.3112-3130
Main Authors: Roy, David P., Ju, Junchang, Lewis, Philip, Schaaf, Crystal, Gao, Feng, Hansen, Matt, Lindquist, Erik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293
cites cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293
container_end_page 3130
container_issue 6
container_start_page 3112
container_title Remote sensing of environment
container_volume 112
creator Roy, David P.
Ju, Junchang
Lewis, Philip
Schaaf, Crystal
Gao, Feng
Hansen, Matt
Lindquist, Erik
description A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.
doi_str_mv 10.1016/j.rse.2008.03.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20816743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425708001065</els_id><sourcerecordid>20816743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxi0EEkvhAbj5AqcmjOOktsUJlX-VtuqB9myNHbvyyomDna1EDxXvwBvyJHi1FeLEYTSH75tvZn6EvGbQMmBn73ZtLq7tAGQLvAVQT8iGSaEaENA_JRsA3jd9N4jn5EUpOwA2SME25OFyH9fQrG5aUsZIL68-Xnz7_fPXFuex4EpHXJH6fQlppj5lml3ENdw5mnEMaXJrDpbOKU8Yw31V0nxKb3GhPsQY5ttTWnPokt0Y7EGkydN_o1-SZx5jca8e-wm5-fzp-vxrs736cnH-YdtYPsi1wc5Izow1DqUShivovRpwMP0wGiG5cFgV2XVWGWUEU72qxZky3gHrFD8hb4-5S07f966segrFuhhxdmlfdAeSnYmeVyM7Gm1OpWTn9ZLDhPmHZqAPpPVOV9L6QFoD15V0nXnzGI7FYvQZZxvK38EO-sPBovreH32ufnoXXNbFBjfbCic7u-oxhf9s-QP39JX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20816743</pqid></control><display><type>article</type><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><source>ScienceDirect Freedom Collection</source><creator>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</creator><creatorcontrib>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</creatorcontrib><description>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2008.03.009</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; BRDF ; Data fusion ; Earth sciences ; Earth, ocean, space ; ETM ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Image mosaicking ; Internal geophysics ; MODIS ; Radiometric normalization ; SLC-off gap filling ; Teledetection and vegetation maps</subject><ispartof>Remote sensing of environment, 2008-06, Vol.112 (6), p.3112-3130</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</citedby><cites>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20439047$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, David P.</creatorcontrib><creatorcontrib>Ju, Junchang</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Schaaf, Crystal</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Hansen, Matt</creatorcontrib><creatorcontrib>Lindquist, Erik</creatorcontrib><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><title>Remote sensing of environment</title><description>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>BRDF</subject><subject>Data fusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ETM</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Image mosaicking</subject><subject>Internal geophysics</subject><subject>MODIS</subject><subject>Radiometric normalization</subject><subject>SLC-off gap filling</subject><subject>Teledetection and vegetation maps</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u1DAQxi0EEkvhAbj5AqcmjOOktsUJlX-VtuqB9myNHbvyyomDna1EDxXvwBvyJHi1FeLEYTSH75tvZn6EvGbQMmBn73ZtLq7tAGQLvAVQT8iGSaEaENA_JRsA3jd9N4jn5EUpOwA2SME25OFyH9fQrG5aUsZIL68-Xnz7_fPXFuex4EpHXJH6fQlppj5lml3ENdw5mnEMaXJrDpbOKU8Yw31V0nxKb3GhPsQY5ttTWnPokt0Y7EGkydN_o1-SZx5jca8e-wm5-fzp-vxrs736cnH-YdtYPsi1wc5Izow1DqUShivovRpwMP0wGiG5cFgV2XVWGWUEU72qxZky3gHrFD8hb4-5S07f966segrFuhhxdmlfdAeSnYmeVyM7Gm1OpWTn9ZLDhPmHZqAPpPVOV9L6QFoD15V0nXnzGI7FYvQZZxvK38EO-sPBovreH32ufnoXXNbFBjfbCic7u-oxhf9s-QP39JX8</recordid><startdate>20080616</startdate><enddate>20080616</enddate><creator>Roy, David P.</creator><creator>Ju, Junchang</creator><creator>Lewis, Philip</creator><creator>Schaaf, Crystal</creator><creator>Gao, Feng</creator><creator>Hansen, Matt</creator><creator>Lindquist, Erik</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20080616</creationdate><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><author>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>BRDF</topic><topic>Data fusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ETM</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Image mosaicking</topic><topic>Internal geophysics</topic><topic>MODIS</topic><topic>Radiometric normalization</topic><topic>SLC-off gap filling</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, David P.</creatorcontrib><creatorcontrib>Ju, Junchang</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Schaaf, Crystal</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Hansen, Matt</creatorcontrib><creatorcontrib>Lindquist, Erik</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, David P.</au><au>Ju, Junchang</au><au>Lewis, Philip</au><au>Schaaf, Crystal</au><au>Gao, Feng</au><au>Hansen, Matt</au><au>Lindquist, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</atitle><jtitle>Remote sensing of environment</jtitle><date>2008-06-16</date><risdate>2008</risdate><volume>112</volume><issue>6</issue><spage>3112</spage><epage>3130</epage><pages>3112-3130</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2008.03.009</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2008-06, Vol.112 (6), p.3112-3130
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_miscellaneous_20816743
source ScienceDirect Freedom Collection
subjects Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
BRDF
Data fusion
Earth sciences
Earth, ocean, space
ETM
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Image mosaicking
Internal geophysics
MODIS
Radiometric normalization
SLC-off gap filling
Teledetection and vegetation maps
title Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-temporal%20MODIS%E2%80%93Landsat%20data%20fusion%20for%20relative%20radiometric%20normalization,%20gap%20filling,%20and%20prediction%20of%20Landsat%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Roy,%20David%20P.&rft.date=2008-06-16&rft.volume=112&rft.issue=6&rft.spage=3112&rft.epage=3130&rft.pages=3112-3130&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2008.03.009&rft_dat=%3Cproquest_cross%3E20816743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20816743&rft_id=info:pmid/&rfr_iscdi=true