Loading…
Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for rela...
Saved in:
Published in: | Remote sensing of environment 2008-06, Vol.112 (6), p.3112-3130 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293 |
container_end_page | 3130 |
container_issue | 6 |
container_start_page | 3112 |
container_title | Remote sensing of environment |
container_volume | 112 |
creator | Roy, David P. Ju, Junchang Lewis, Philip Schaaf, Crystal Gao, Feng Hansen, Matt Lindquist, Erik |
description | A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment. |
doi_str_mv | 10.1016/j.rse.2008.03.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20816743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425708001065</els_id><sourcerecordid>20816743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</originalsourceid><addsrcrecordid>eNp9kM9u1DAQxi0EEkvhAbj5AqcmjOOktsUJlX-VtuqB9myNHbvyyomDna1EDxXvwBvyJHi1FeLEYTSH75tvZn6EvGbQMmBn73ZtLq7tAGQLvAVQT8iGSaEaENA_JRsA3jd9N4jn5EUpOwA2SME25OFyH9fQrG5aUsZIL68-Xnz7_fPXFuex4EpHXJH6fQlppj5lml3ENdw5mnEMaXJrDpbOKU8Yw31V0nxKb3GhPsQY5ttTWnPokt0Y7EGkydN_o1-SZx5jca8e-wm5-fzp-vxrs736cnH-YdtYPsi1wc5Izow1DqUShivovRpwMP0wGiG5cFgV2XVWGWUEU72qxZky3gHrFD8hb4-5S07f966segrFuhhxdmlfdAeSnYmeVyM7Gm1OpWTn9ZLDhPmHZqAPpPVOV9L6QFoD15V0nXnzGI7FYvQZZxvK38EO-sPBovreH32ufnoXXNbFBjfbCic7u-oxhf9s-QP39JX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20816743</pqid></control><display><type>article</type><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><source>ScienceDirect Freedom Collection</source><creator>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</creator><creatorcontrib>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</creatorcontrib><description>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2008.03.009</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; BRDF ; Data fusion ; Earth sciences ; Earth, ocean, space ; ETM ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Image mosaicking ; Internal geophysics ; MODIS ; Radiometric normalization ; SLC-off gap filling ; Teledetection and vegetation maps</subject><ispartof>Remote sensing of environment, 2008-06, Vol.112 (6), p.3112-3130</ispartof><rights>2008 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</citedby><cites>FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20439047$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, David P.</creatorcontrib><creatorcontrib>Ju, Junchang</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Schaaf, Crystal</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Hansen, Matt</creatorcontrib><creatorcontrib>Lindquist, Erik</creatorcontrib><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><title>Remote sensing of environment</title><description>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>BRDF</subject><subject>Data fusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>ETM</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Image mosaicking</subject><subject>Internal geophysics</subject><subject>MODIS</subject><subject>Radiometric normalization</subject><subject>SLC-off gap filling</subject><subject>Teledetection and vegetation maps</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM9u1DAQxi0EEkvhAbj5AqcmjOOktsUJlX-VtuqB9myNHbvyyomDna1EDxXvwBvyJHi1FeLEYTSH75tvZn6EvGbQMmBn73ZtLq7tAGQLvAVQT8iGSaEaENA_JRsA3jd9N4jn5EUpOwA2SME25OFyH9fQrG5aUsZIL68-Xnz7_fPXFuex4EpHXJH6fQlppj5lml3ENdw5mnEMaXJrDpbOKU8Yw31V0nxKb3GhPsQY5ttTWnPokt0Y7EGkydN_o1-SZx5jca8e-wm5-fzp-vxrs736cnH-YdtYPsi1wc5Izow1DqUShivovRpwMP0wGiG5cFgV2XVWGWUEU72qxZky3gHrFD8hb4-5S07f966segrFuhhxdmlfdAeSnYmeVyM7Gm1OpWTn9ZLDhPmHZqAPpPVOV9L6QFoD15V0nXnzGI7FYvQZZxvK38EO-sPBovreH32ufnoXXNbFBjfbCic7u-oxhf9s-QP39JX8</recordid><startdate>20080616</startdate><enddate>20080616</enddate><creator>Roy, David P.</creator><creator>Ju, Junchang</creator><creator>Lewis, Philip</creator><creator>Schaaf, Crystal</creator><creator>Gao, Feng</creator><creator>Hansen, Matt</creator><creator>Lindquist, Erik</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>20080616</creationdate><title>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</title><author>Roy, David P. ; Ju, Junchang ; Lewis, Philip ; Schaaf, Crystal ; Gao, Feng ; Hansen, Matt ; Lindquist, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>BRDF</topic><topic>Data fusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>ETM</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Image mosaicking</topic><topic>Internal geophysics</topic><topic>MODIS</topic><topic>Radiometric normalization</topic><topic>SLC-off gap filling</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, David P.</creatorcontrib><creatorcontrib>Ju, Junchang</creatorcontrib><creatorcontrib>Lewis, Philip</creatorcontrib><creatorcontrib>Schaaf, Crystal</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Hansen, Matt</creatorcontrib><creatorcontrib>Lindquist, Erik</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, David P.</au><au>Ju, Junchang</au><au>Lewis, Philip</au><au>Schaaf, Crystal</au><au>Gao, Feng</au><au>Hansen, Matt</au><au>Lindquist, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data</atitle><jtitle>Remote sensing of environment</jtitle><date>2008-06-16</date><risdate>2008</risdate><volume>112</volume><issue>6</issue><spage>3112</spage><epage>3130</epage><pages>3112-3130</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>A semi-physical fusion approach that uses the MODIS BRDF/Albedo land surface characterization product and Landsat ETM+ data to predict ETM+ reflectance on the same, an antecedent, or subsequent date is presented. The method may be used for ETM+ cloud/cloud shadow and SLC-off gap filling and for relative radiometric normalization. It is demonstrated over three study sites, one in Africa and two in the U.S. (Oregon and Idaho) that were selected to encompass a range of land cover land use types and temporal variations in solar illumination, land cover, land use, and phenology. Specifically, the 30 m ETM+ spectral reflectance is predicted for a desired date as the product of observed ETM+ reflectance and the ratio of the 500 m surface reflectance modeled using the MODIS BRDF spectral model parameters and the sun-sensor geometry on the predicted and observed Landsat dates. The difference between the predicted and observed ETM+ reflectance (prediction residual) is compared with the difference between the ETM+ reflectance observed on the two dates (temporal residual) and with respect to the MODIS BRDF model parameter quality. For all three scenes, and all but the shortest wavelength band, the mean prediction residual is smaller than the mean temporal residual, by up to a factor of three. The accuracy is typically higher at ETM+ pixel locations where the MODIS BRDF model parameters are derived using the best quality inversions. The method is most accurate for the ETM+ near-infrared (NIR) band; mean NIR prediction residuals are 9%, 12% and 14% of the mean NIR scene reflectance of the African, Oregon and Idaho sites respectively. The developed fusion approach may be applied to any high spatial resolution satellite data, does not require any tuning parameters and so may be automated, is applied on a per-pixel basis and is unaffected by the presence of missing or contaminated neighboring Landsat pixels, accommodates for temporal variations due to surface changes (e.g., phenological, land cover/land use variations) observable at the 500 m MODIS BRDF/Albedo product resolution, and allows for future improvements through BRDF model refinement and error assessment.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2008.03.009</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2008-06, Vol.112 (6), p.3112-3130 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_miscellaneous_20816743 |
source | ScienceDirect Freedom Collection |
subjects | Animal, plant and microbial ecology Applied geophysics Biological and medical sciences BRDF Data fusion Earth sciences Earth, ocean, space ETM Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Image mosaicking Internal geophysics MODIS Radiometric normalization SLC-off gap filling Teledetection and vegetation maps |
title | Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-temporal%20MODIS%E2%80%93Landsat%20data%20fusion%20for%20relative%20radiometric%20normalization,%20gap%20filling,%20and%20prediction%20of%20Landsat%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Roy,%20David%20P.&rft.date=2008-06-16&rft.volume=112&rft.issue=6&rft.spage=3112&rft.epage=3130&rft.pages=3112-3130&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2008.03.009&rft_dat=%3Cproquest_cross%3E20816743%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a2b831bcbea897b3904f95a5b45db7837eaea8822c9b9b71949194319bfe01293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20816743&rft_id=info:pmid/&rfr_iscdi=true |