Loading…

From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity

The adenosine diphosphate (ADP)-ribosyltransferase, Vip2 (vegetative insecticidal protein), from Bacillus cereus in combination with another protein from the same organism, Vip1, has insecticidal activity against western corn rootworm larvae. The Vip2 protein exerts its intracellular poisoning effec...

Full description

Saved in:
Bibliographic Details
Published in:Protein engineering, design and selection design and selection, 2008-10, Vol.21 (10), p.631-638
Main Authors: Jucovic, Milan, Walters, Frederick S., Warren, Gregory W., Palekar, Narendra V., Chen, Jeng S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943
cites cdi_FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943
container_end_page 638
container_issue 10
container_start_page 631
container_title Protein engineering, design and selection
container_volume 21
creator Jucovic, Milan
Walters, Frederick S.
Warren, Gregory W.
Palekar, Narendra V.
Chen, Jeng S.
description The adenosine diphosphate (ADP)-ribosyltransferase, Vip2 (vegetative insecticidal protein), from Bacillus cereus in combination with another protein from the same organism, Vip1, has insecticidal activity against western corn rootworm larvae. The Vip2 protein exerts its intracellular poisoning effect by modifying actin and preventing actin polymerization. Due to the nature of this toxin, expression of Vip2 in planta is lethal. In this work, we attempted to build an enzyme precursor (proenzyme, zymogen) that would silently reside in one biological system (e.g. plants or yeast) and be activated in the other (insect larvae). Our approach involved engineering a random propeptide library at the C-terminal end of Vip2 and selecting for malfunctional enzyme variants in yeast. A selected proenzyme (proVip2) possesses reduced enzymatic activity as compared with the wild-type Vip2 protein, but remains a potent toxin toward rootworm larvae. In addition, upon analysis of the digestive fate of the engineered enzyme precursor in rootworm larvae, we demonstrated that ‘zymogenized’ Vip2 can be proteolytically activated by rootworm digestive enzyme machinery. This report represents an example of applying a protein engineering strategy for the creation of a plant-tolerated, zymogen-like form of an otherwise toxic protein. This approach may outline a novel path to address challenges associated with utilizing toxic proteins in certain biotechnological applications.
doi_str_mv 10.1093/protein/gzn038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20833291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzn038</oup_id><sourcerecordid>20833291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943</originalsourceid><addsrcrecordid>eNqFkc9rFTEQxxdR7A-9epTgQRC6bZLZX_HWvtpWeKAHf-ElZJPJI3U3eSa70Ne_3pR9VPDiaYbhMx-G-RbFK0ZPGRVwto1hQufPNveeQvekOGRtxUrKoHr62PPmoDhK6ZZS3rSMPS8OWNdy6Gp-WMSrGEaC_n43IpkCyTVs0L_Po43ziNH5DfnmtvyEKE_OLz-X0fUh7YYpKp8sRpWQ2AfHhdJuGOZENEac0wmxIRIdvHGTC14N2X7ntJt2L4pnVg0JX-7rcfH16sOX1U25_nT9cXW-LnXVwFRqrpmxhglQ1Jqeibrqq9qCqUWHRlve8Q5QtA0IqE3VgzLAOCB0ltleVHBcvF28-Ue_Z0yTHF3SOAzKY5iT5LQD4IJl8M0_4G2YYz45M7yuaZVvyNDpAukYUopo5Ta6UcWdZFQ-RCH3Ucglirzwem-d-xHNX3z_-wy8W4Awb_8vKxfWpQnvHmkVf8mmhbaWNz9-Siou1qvmO5PX8AfOPqXV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>225504193</pqid></control><display><type>article</type><title>From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity</title><source>Oxford Journals Online</source><creator>Jucovic, Milan ; Walters, Frederick S. ; Warren, Gregory W. ; Palekar, Narendra V. ; Chen, Jeng S.</creator><creatorcontrib>Jucovic, Milan ; Walters, Frederick S. ; Warren, Gregory W. ; Palekar, Narendra V. ; Chen, Jeng S.</creatorcontrib><description>The adenosine diphosphate (ADP)-ribosyltransferase, Vip2 (vegetative insecticidal protein), from Bacillus cereus in combination with another protein from the same organism, Vip1, has insecticidal activity against western corn rootworm larvae. The Vip2 protein exerts its intracellular poisoning effect by modifying actin and preventing actin polymerization. Due to the nature of this toxin, expression of Vip2 in planta is lethal. In this work, we attempted to build an enzyme precursor (proenzyme, zymogen) that would silently reside in one biological system (e.g. plants or yeast) and be activated in the other (insect larvae). Our approach involved engineering a random propeptide library at the C-terminal end of Vip2 and selecting for malfunctional enzyme variants in yeast. A selected proenzyme (proVip2) possesses reduced enzymatic activity as compared with the wild-type Vip2 protein, but remains a potent toxin toward rootworm larvae. In addition, upon analysis of the digestive fate of the engineered enzyme precursor in rootworm larvae, we demonstrated that ‘zymogenized’ Vip2 can be proteolytically activated by rootworm digestive enzyme machinery. This report represents an example of applying a protein engineering strategy for the creation of a plant-tolerated, zymogen-like form of an otherwise toxic protein. This approach may outline a novel path to address challenges associated with utilizing toxic proteins in certain biotechnological applications.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzn038</identifier><identifier>PMID: 18723852</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine diphosphate ; ADP Ribose Transferases - chemistry ; ADP Ribose Transferases - genetics ; ADP Ribose Transferases - metabolism ; ADP Ribose Transferases - toxicity ; ADP-ribosyltransferase ; Amino Acid Sequence ; Animals ; Bacillus cereus ; Bacillus cereus - enzymology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - toxicity ; Bacterial Toxins - chemistry ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Bacterial Toxins - toxicity ; Biotechnology ; Coleoptera - drug effects ; Coleoptera - growth &amp; development ; conditional toxicity ; Enzymatic activity ; Enzyme Activation - drug effects ; Enzyme Precursors - genetics ; Enzyme Precursors - metabolism ; Insecticides - chemistry ; Insecticides - metabolism ; Insecticides - toxicity ; Larva - drug effects ; Larva - metabolism ; Larvae ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptide Library ; Plants - metabolism ; proenzyme ; Protein Conformation ; Protein Engineering - methods ; Toxins ; Vip2 ; Yeasts ; Yeasts - metabolism ; zymogen</subject><ispartof>Protein engineering, design and selection, 2008-10, Vol.21 (10), p.631-638</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943</citedby><cites>FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18723852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jucovic, Milan</creatorcontrib><creatorcontrib>Walters, Frederick S.</creatorcontrib><creatorcontrib>Warren, Gregory W.</creatorcontrib><creatorcontrib>Palekar, Narendra V.</creatorcontrib><creatorcontrib>Chen, Jeng S.</creatorcontrib><title>From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>The adenosine diphosphate (ADP)-ribosyltransferase, Vip2 (vegetative insecticidal protein), from Bacillus cereus in combination with another protein from the same organism, Vip1, has insecticidal activity against western corn rootworm larvae. The Vip2 protein exerts its intracellular poisoning effect by modifying actin and preventing actin polymerization. Due to the nature of this toxin, expression of Vip2 in planta is lethal. In this work, we attempted to build an enzyme precursor (proenzyme, zymogen) that would silently reside in one biological system (e.g. plants or yeast) and be activated in the other (insect larvae). Our approach involved engineering a random propeptide library at the C-terminal end of Vip2 and selecting for malfunctional enzyme variants in yeast. A selected proenzyme (proVip2) possesses reduced enzymatic activity as compared with the wild-type Vip2 protein, but remains a potent toxin toward rootworm larvae. In addition, upon analysis of the digestive fate of the engineered enzyme precursor in rootworm larvae, we demonstrated that ‘zymogenized’ Vip2 can be proteolytically activated by rootworm digestive enzyme machinery. This report represents an example of applying a protein engineering strategy for the creation of a plant-tolerated, zymogen-like form of an otherwise toxic protein. This approach may outline a novel path to address challenges associated with utilizing toxic proteins in certain biotechnological applications.</description><subject>Adenosine diphosphate</subject><subject>ADP Ribose Transferases - chemistry</subject><subject>ADP Ribose Transferases - genetics</subject><subject>ADP Ribose Transferases - metabolism</subject><subject>ADP Ribose Transferases - toxicity</subject><subject>ADP-ribosyltransferase</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacillus cereus</subject><subject>Bacillus cereus - enzymology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - toxicity</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Bacterial Toxins - toxicity</subject><subject>Biotechnology</subject><subject>Coleoptera - drug effects</subject><subject>Coleoptera - growth &amp; development</subject><subject>conditional toxicity</subject><subject>Enzymatic activity</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Precursors - genetics</subject><subject>Enzyme Precursors - metabolism</subject><subject>Insecticides - chemistry</subject><subject>Insecticides - metabolism</subject><subject>Insecticides - toxicity</subject><subject>Larva - drug effects</subject><subject>Larva - metabolism</subject><subject>Larvae</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Peptide Library</subject><subject>Plants - metabolism</subject><subject>proenzyme</subject><subject>Protein Conformation</subject><subject>Protein Engineering - methods</subject><subject>Toxins</subject><subject>Vip2</subject><subject>Yeasts</subject><subject>Yeasts - metabolism</subject><subject>zymogen</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFTEQxxdR7A-9epTgQRC6bZLZX_HWvtpWeKAHf-ElZJPJI3U3eSa70Ne_3pR9VPDiaYbhMx-G-RbFK0ZPGRVwto1hQufPNveeQvekOGRtxUrKoHr62PPmoDhK6ZZS3rSMPS8OWNdy6Gp-WMSrGEaC_n43IpkCyTVs0L_Po43ziNH5DfnmtvyEKE_OLz-X0fUh7YYpKp8sRpWQ2AfHhdJuGOZENEac0wmxIRIdvHGTC14N2X7ntJt2L4pnVg0JX-7rcfH16sOX1U25_nT9cXW-LnXVwFRqrpmxhglQ1Jqeibrqq9qCqUWHRlve8Q5QtA0IqE3VgzLAOCB0ltleVHBcvF28-Ue_Z0yTHF3SOAzKY5iT5LQD4IJl8M0_4G2YYz45M7yuaZVvyNDpAukYUopo5Ta6UcWdZFQ-RCH3Ucglirzwem-d-xHNX3z_-wy8W4Awb_8vKxfWpQnvHmkVf8mmhbaWNz9-Siou1qvmO5PX8AfOPqXV</recordid><startdate>20081001</startdate><enddate>20081001</enddate><creator>Jucovic, Milan</creator><creator>Walters, Frederick S.</creator><creator>Warren, Gregory W.</creator><creator>Palekar, Narendra V.</creator><creator>Chen, Jeng S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7SS</scope><scope>7U7</scope></search><sort><creationdate>20081001</creationdate><title>From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity</title><author>Jucovic, Milan ; Walters, Frederick S. ; Warren, Gregory W. ; Palekar, Narendra V. ; Chen, Jeng S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenosine diphosphate</topic><topic>ADP Ribose Transferases - chemistry</topic><topic>ADP Ribose Transferases - genetics</topic><topic>ADP Ribose Transferases - metabolism</topic><topic>ADP Ribose Transferases - toxicity</topic><topic>ADP-ribosyltransferase</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacillus cereus</topic><topic>Bacillus cereus - enzymology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - toxicity</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Bacterial Toxins - toxicity</topic><topic>Biotechnology</topic><topic>Coleoptera - drug effects</topic><topic>Coleoptera - growth &amp; development</topic><topic>conditional toxicity</topic><topic>Enzymatic activity</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Precursors - genetics</topic><topic>Enzyme Precursors - metabolism</topic><topic>Insecticides - chemistry</topic><topic>Insecticides - metabolism</topic><topic>Insecticides - toxicity</topic><topic>Larva - drug effects</topic><topic>Larva - metabolism</topic><topic>Larvae</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Peptide Library</topic><topic>Plants - metabolism</topic><topic>proenzyme</topic><topic>Protein Conformation</topic><topic>Protein Engineering - methods</topic><topic>Toxins</topic><topic>Vip2</topic><topic>Yeasts</topic><topic>Yeasts - metabolism</topic><topic>zymogen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jucovic, Milan</creatorcontrib><creatorcontrib>Walters, Frederick S.</creatorcontrib><creatorcontrib>Warren, Gregory W.</creatorcontrib><creatorcontrib>Palekar, Narendra V.</creatorcontrib><creatorcontrib>Chen, Jeng S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jucovic, Milan</au><au>Walters, Frederick S.</au><au>Warren, Gregory W.</au><au>Palekar, Narendra V.</au><au>Chen, Jeng S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2008-10-01</date><risdate>2008</risdate><volume>21</volume><issue>10</issue><spage>631</spage><epage>638</epage><pages>631-638</pages><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>The adenosine diphosphate (ADP)-ribosyltransferase, Vip2 (vegetative insecticidal protein), from Bacillus cereus in combination with another protein from the same organism, Vip1, has insecticidal activity against western corn rootworm larvae. The Vip2 protein exerts its intracellular poisoning effect by modifying actin and preventing actin polymerization. Due to the nature of this toxin, expression of Vip2 in planta is lethal. In this work, we attempted to build an enzyme precursor (proenzyme, zymogen) that would silently reside in one biological system (e.g. plants or yeast) and be activated in the other (insect larvae). Our approach involved engineering a random propeptide library at the C-terminal end of Vip2 and selecting for malfunctional enzyme variants in yeast. A selected proenzyme (proVip2) possesses reduced enzymatic activity as compared with the wild-type Vip2 protein, but remains a potent toxin toward rootworm larvae. In addition, upon analysis of the digestive fate of the engineered enzyme precursor in rootworm larvae, we demonstrated that ‘zymogenized’ Vip2 can be proteolytically activated by rootworm digestive enzyme machinery. This report represents an example of applying a protein engineering strategy for the creation of a plant-tolerated, zymogen-like form of an otherwise toxic protein. This approach may outline a novel path to address challenges associated with utilizing toxic proteins in certain biotechnological applications.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18723852</pmid><doi>10.1093/protein/gzn038</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, design and selection, 2008-10, Vol.21 (10), p.631-638
issn 1741-0126
1741-0134
language eng
recordid cdi_proquest_miscellaneous_20833291
source Oxford Journals Online
subjects Adenosine diphosphate
ADP Ribose Transferases - chemistry
ADP Ribose Transferases - genetics
ADP Ribose Transferases - metabolism
ADP Ribose Transferases - toxicity
ADP-ribosyltransferase
Amino Acid Sequence
Animals
Bacillus cereus
Bacillus cereus - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacterial Proteins - toxicity
Bacterial Toxins - chemistry
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Bacterial Toxins - toxicity
Biotechnology
Coleoptera - drug effects
Coleoptera - growth & development
conditional toxicity
Enzymatic activity
Enzyme Activation - drug effects
Enzyme Precursors - genetics
Enzyme Precursors - metabolism
Insecticides - chemistry
Insecticides - metabolism
Insecticides - toxicity
Larva - drug effects
Larva - metabolism
Larvae
Models, Molecular
Molecular Sequence Data
Mutagenesis
Peptide Library
Plants - metabolism
proenzyme
Protein Conformation
Protein Engineering - methods
Toxins
Vip2
Yeasts
Yeasts - metabolism
zymogen
title From enzyme to zymogen: engineering Vip2, an ADP-ribosyltransferase from Bacillus cereus, for conditional toxicity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20enzyme%20to%20zymogen:%20engineering%20Vip2,%20an%20ADP-ribosyltransferase%20from%20Bacillus%20cereus,%20for%20conditional%20toxicity&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Jucovic,%20Milan&rft.date=2008-10-01&rft.volume=21&rft.issue=10&rft.spage=631&rft.epage=638&rft.pages=631-638&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzn038&rft_dat=%3Cproquest_cross%3E20833291%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c463t-c2c1dfd193a0fdb1954b45f3d598edcf28283e9763935d4b3ad3123e38f1fb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=225504193&rft_id=info:pmid/18723852&rft_oup_id=10.1093/protein/gzn038&rfr_iscdi=true