Loading…
Audiogram estimation using Bayesian active learning
Two methods for estimating audiograms quickly and accurately using Bayesian active learning were developed and evaluated. Both methods provided an estimate of threshold as a continuous function of frequency. For one method, six successive tones with decreasing levels were presented on each trial and...
Saved in:
Published in: | The Journal of the Acoustical Society of America 2018-07, Vol.144 (1), p.421-430 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two methods for estimating audiograms quickly and accurately using Bayesian active learning were developed and evaluated. Both methods provided an estimate of threshold as a continuous function of frequency. For one method, six successive tones with decreasing levels were presented on each trial and the task was to count the number of tones heard. A Gaussian Process was used for classification and maximum-information sampling to determine the frequency and levels of the stimuli for the next trial. The other method was based on a published method using a Yes/No task but extended to account for lapses. The obtained audiograms were compared to conventional audiograms for 40 ears, 19 of which were hearing impaired. The threshold estimates for the active-learning methods were systematically from 2 to 4 dB below (better than) those for the conventional audiograms, which may indicate a less conservative response criterion (a greater willingness to respond for a given amount of sensory information). Both active-learning methods were able to allow for wrong button presses (due to lapses of attention) and provided accurate audiogram estimates in less than 50 trials or 4 min. For a given level of accuracy, the counting task was slightly quicker than the Yes/No task. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.5047436 |