Loading…

Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory

Neural oscillatory activity in the theta (4–8 Hz) and alpha (8–14 Hz) bands has been associated with the implementation of executive function, with theta in midline frontal cortex and alpha in posterior parietal cortex related to working memory (WM) load. To identify how these spatially and spectral...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2018-11, Vol.181, p.728-733
Main Authors: Popov, Tzvetan, Popova, Petia, Harkotte, Maximilian, Awiszus, Barbara, Rockstroh, Brigitte, Miller, Gregory A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3
cites cdi_FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3
container_end_page 733
container_issue
container_start_page 728
container_title NeuroImage (Orlando, Fla.)
container_volume 181
creator Popov, Tzvetan
Popova, Petia
Harkotte, Maximilian
Awiszus, Barbara
Rockstroh, Brigitte
Miller, Gregory A.
description Neural oscillatory activity in the theta (4–8 Hz) and alpha (8–14 Hz) bands has been associated with the implementation of executive function, with theta in midline frontal cortex and alpha in posterior parietal cortex related to working memory (WM) load. To identify how these spatially and spectrally distinct neural phenomena interact within a large-scale fronto-parietal network organized in service of WM, EEG was recorded while subjects performed an N-back WM task. Frontal theta power increase, paralleled by posterior alpha decrease, tracked participants' successful WM performance. These power fluctuations were inversely related both across and within trials and predicted reaction time, suggesting a functionally important communication channel within the fronto-parietal network. Granger causality analysis revealed directed parietal to frontal communication via alpha and frontal to parietal communication via theta. Results encourage consideration of these bidirectional, power-to-power, cross-frequency control mechanisms as an important feature of cerebral network organization supporting executive function. •Theta power increase, paralleled by posterior alpha decrease, tracks participants’ successful working memory performance.•Theta and alpha activity are inversely related both across and within trials.•Granger causality reveals directed parietal to frontal communication via alpha and frontal to parietal via theta activity.
doi_str_mv 10.1016/j.neuroimage.2018.07.067
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2083711908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811918306839</els_id><sourcerecordid>2083711908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERcuWv4AsceGSMP5InBxhVT6kSlzas-U4466XxF7shGr_PV62gMQFX8aSn_HY70MIZVAzYO27fR1wTdHP5gFrDqyrQdXQqmfkikHfVH2j-PPTvhFVx1h_SV7mvAeAnsnuBbkUAKrhqr0icZtizpVL-H3FYI_UhwWTsYuPIdMBl0fEQF2KYTETXXa4GGrCSA8xF87HRM102BlqC5DiRGe0OxN8njN1vxD6GNM3Hx7KyRzT8ZpcODNlfPVUN-T-483d9nN1-_XTl-3728rKtlsqAcpC2yjVKWFN0zMrbQtydGpwUgy86YZ-7IV0VnbcuR4aY9QwcMUH2Vozig15e773kGL5WV707LPFaTIB45o1h06okkwpG_LmH3Qf1xTK6zRnwIUsSxSqO1P2FFhCpw-p5J-OmoE-SdF7_VeKPknRoHSRUlpfPw1YhxnHP42_LRTgwxnAksgPj0ln64sNHH1Cu-gx-v9P-Qnl7aU_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102344443</pqid></control><display><type>article</type><title>Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory</title><source>ScienceDirect Journals</source><creator>Popov, Tzvetan ; Popova, Petia ; Harkotte, Maximilian ; Awiszus, Barbara ; Rockstroh, Brigitte ; Miller, Gregory A.</creator><creatorcontrib>Popov, Tzvetan ; Popova, Petia ; Harkotte, Maximilian ; Awiszus, Barbara ; Rockstroh, Brigitte ; Miller, Gregory A.</creatorcontrib><description>Neural oscillatory activity in the theta (4–8 Hz) and alpha (8–14 Hz) bands has been associated with the implementation of executive function, with theta in midline frontal cortex and alpha in posterior parietal cortex related to working memory (WM) load. To identify how these spatially and spectrally distinct neural phenomena interact within a large-scale fronto-parietal network organized in service of WM, EEG was recorded while subjects performed an N-back WM task. Frontal theta power increase, paralleled by posterior alpha decrease, tracked participants' successful WM performance. These power fluctuations were inversely related both across and within trials and predicted reaction time, suggesting a functionally important communication channel within the fronto-parietal network. Granger causality analysis revealed directed parietal to frontal communication via alpha and frontal to parietal communication via theta. Results encourage consideration of these bidirectional, power-to-power, cross-frequency control mechanisms as an important feature of cerebral network organization supporting executive function. •Theta power increase, paralleled by posterior alpha decrease, tracks participants’ successful working memory performance.•Theta and alpha activity are inversely related both across and within trials.•Granger causality reveals directed parietal to frontal communication via alpha and frontal to parietal via theta activity.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2018.07.067</identifier><identifier>PMID: 30075276</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alpha oscillations ; Brain research ; Causality ; Communication ; Connectivity ; Cortex (frontal) ; Cortex (parietal) ; Data analysis ; EEG ; Electroencephalography ; Executive function ; Granger causality ; Memory ; Reaction time task ; Short term memory ; Studies ; Theta oscillations ; Theta rhythms ; Working memory</subject><ispartof>NeuroImage (Orlando, Fla.), 2018-11, Vol.181, p.728-733</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>2018. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3</citedby><cites>FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30075276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Popov, Tzvetan</creatorcontrib><creatorcontrib>Popova, Petia</creatorcontrib><creatorcontrib>Harkotte, Maximilian</creatorcontrib><creatorcontrib>Awiszus, Barbara</creatorcontrib><creatorcontrib>Rockstroh, Brigitte</creatorcontrib><creatorcontrib>Miller, Gregory A.</creatorcontrib><title>Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Neural oscillatory activity in the theta (4–8 Hz) and alpha (8–14 Hz) bands has been associated with the implementation of executive function, with theta in midline frontal cortex and alpha in posterior parietal cortex related to working memory (WM) load. To identify how these spatially and spectrally distinct neural phenomena interact within a large-scale fronto-parietal network organized in service of WM, EEG was recorded while subjects performed an N-back WM task. Frontal theta power increase, paralleled by posterior alpha decrease, tracked participants' successful WM performance. These power fluctuations were inversely related both across and within trials and predicted reaction time, suggesting a functionally important communication channel within the fronto-parietal network. Granger causality analysis revealed directed parietal to frontal communication via alpha and frontal to parietal communication via theta. Results encourage consideration of these bidirectional, power-to-power, cross-frequency control mechanisms as an important feature of cerebral network organization supporting executive function. •Theta power increase, paralleled by posterior alpha decrease, tracks participants’ successful working memory performance.•Theta and alpha activity are inversely related both across and within trials.•Granger causality reveals directed parietal to frontal communication via alpha and frontal to parietal via theta activity.</description><subject>Alpha oscillations</subject><subject>Brain research</subject><subject>Causality</subject><subject>Communication</subject><subject>Connectivity</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Data analysis</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Executive function</subject><subject>Granger causality</subject><subject>Memory</subject><subject>Reaction time task</subject><subject>Short term memory</subject><subject>Studies</subject><subject>Theta oscillations</subject><subject>Theta rhythms</subject><subject>Working memory</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERcuWv4AsceGSMP5InBxhVT6kSlzas-U4466XxF7shGr_PV62gMQFX8aSn_HY70MIZVAzYO27fR1wTdHP5gFrDqyrQdXQqmfkikHfVH2j-PPTvhFVx1h_SV7mvAeAnsnuBbkUAKrhqr0icZtizpVL-H3FYI_UhwWTsYuPIdMBl0fEQF2KYTETXXa4GGrCSA8xF87HRM102BlqC5DiRGe0OxN8njN1vxD6GNM3Hx7KyRzT8ZpcODNlfPVUN-T-483d9nN1-_XTl-3728rKtlsqAcpC2yjVKWFN0zMrbQtydGpwUgy86YZ-7IV0VnbcuR4aY9QwcMUH2Vozig15e773kGL5WV707LPFaTIB45o1h06okkwpG_LmH3Qf1xTK6zRnwIUsSxSqO1P2FFhCpw-p5J-OmoE-SdF7_VeKPknRoHSRUlpfPw1YhxnHP42_LRTgwxnAksgPj0ln64sNHH1Cu-gx-v9P-Qnl7aU_</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Popov, Tzvetan</creator><creator>Popova, Petia</creator><creator>Harkotte, Maximilian</creator><creator>Awiszus, Barbara</creator><creator>Rockstroh, Brigitte</creator><creator>Miller, Gregory A.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20181101</creationdate><title>Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory</title><author>Popov, Tzvetan ; Popova, Petia ; Harkotte, Maximilian ; Awiszus, Barbara ; Rockstroh, Brigitte ; Miller, Gregory A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alpha oscillations</topic><topic>Brain research</topic><topic>Causality</topic><topic>Communication</topic><topic>Connectivity</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Data analysis</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Executive function</topic><topic>Granger causality</topic><topic>Memory</topic><topic>Reaction time task</topic><topic>Short term memory</topic><topic>Studies</topic><topic>Theta oscillations</topic><topic>Theta rhythms</topic><topic>Working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popov, Tzvetan</creatorcontrib><creatorcontrib>Popova, Petia</creatorcontrib><creatorcontrib>Harkotte, Maximilian</creatorcontrib><creatorcontrib>Awiszus, Barbara</creatorcontrib><creatorcontrib>Rockstroh, Brigitte</creatorcontrib><creatorcontrib>Miller, Gregory A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popov, Tzvetan</au><au>Popova, Petia</au><au>Harkotte, Maximilian</au><au>Awiszus, Barbara</au><au>Rockstroh, Brigitte</au><au>Miller, Gregory A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>181</volume><spage>728</spage><epage>733</epage><pages>728-733</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Neural oscillatory activity in the theta (4–8 Hz) and alpha (8–14 Hz) bands has been associated with the implementation of executive function, with theta in midline frontal cortex and alpha in posterior parietal cortex related to working memory (WM) load. To identify how these spatially and spectrally distinct neural phenomena interact within a large-scale fronto-parietal network organized in service of WM, EEG was recorded while subjects performed an N-back WM task. Frontal theta power increase, paralleled by posterior alpha decrease, tracked participants' successful WM performance. These power fluctuations were inversely related both across and within trials and predicted reaction time, suggesting a functionally important communication channel within the fronto-parietal network. Granger causality analysis revealed directed parietal to frontal communication via alpha and frontal to parietal communication via theta. Results encourage consideration of these bidirectional, power-to-power, cross-frequency control mechanisms as an important feature of cerebral network organization supporting executive function. •Theta power increase, paralleled by posterior alpha decrease, tracks participants’ successful working memory performance.•Theta and alpha activity are inversely related both across and within trials.•Granger causality reveals directed parietal to frontal communication via alpha and frontal to parietal via theta activity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30075276</pmid><doi>10.1016/j.neuroimage.2018.07.067</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2018-11, Vol.181, p.728-733
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_2083711908
source ScienceDirect Journals
subjects Alpha oscillations
Brain research
Causality
Communication
Connectivity
Cortex (frontal)
Cortex (parietal)
Data analysis
EEG
Electroencephalography
Executive function
Granger causality
Memory
Reaction time task
Short term memory
Studies
Theta oscillations
Theta rhythms
Working memory
title Cross-frequency interactions between frontal theta and posterior alpha control mechanisms foster working memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-frequency%20interactions%20between%20frontal%20theta%20and%20posterior%20alpha%20control%20mechanisms%20foster%20working%20memory&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Popov,%20Tzvetan&rft.date=2018-11-01&rft.volume=181&rft.spage=728&rft.epage=733&rft.pages=728-733&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2018.07.067&rft_dat=%3Cproquest_cross%3E2083711908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-307c06577873ca591c4c604df7bf43b258b9d934fc482ff905aa7bb272b46cad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102344443&rft_id=info:pmid/30075276&rfr_iscdi=true