Loading…

Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties

The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2019-01, Vol.647, p.99-109
Main Authors: Tahtouh, Jeffry, Mohtar, Rabi, Assi, Amjad, Schwab, Paul, Jantrania, Anish, Deng, Youjun, Munster, Clyde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2018.07.200