Loading…
Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties
The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation...
Saved in:
Published in: | The Science of the total environment 2019-01, Vol.647, p.99-109 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793 |
---|---|
cites | cdi_FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793 |
container_end_page | 109 |
container_issue | |
container_start_page | 99 |
container_title | The Science of the total environment |
container_volume | 647 |
creator | Tahtouh, Jeffry Mohtar, Rabi Assi, Amjad Schwab, Paul Jantrania, Anish Deng, Youjun Munster, Clyde |
description | The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR |
doi_str_mv | 10.1016/j.scitotenv.2018.07.200 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2084341072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969718326913</els_id><sourcerecordid>2084341072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793</originalsourceid><addsrcrecordid>eNqFkE1PAyEQhonRaP34C7pHL1sH6C7L0Rg_mph40TOhMCh1d6lANf57qVWvzuWdTJ6ZN_MSckZhSoG2F8tpMj6HjOP7lAHtpiCKwg6Z0E7ImgJrd8kEYNbVspXigBymtIRSoqP75ICXRnSNnBAzH1ba5Cq4ahG1efXppXqOYT3aD50xVnq0VY5Yelt96JRxOw5jlYLvK_OCgze6_-YGP2LUfXj-nqxiWGHMHtMx2XO6T3jyo0fk6eb68equvn-4nV9d3teG8wZqKzltpW2E4x1QJrRkTktoLOOcOuEk09jYFrUGSxvmHJ2BsNaKBTeL8jU_Iufbu8X6bY0pq8Eng32vRwzrpBh0Mz6jIFhBxRY1MaQU0alV9IOOn4qC2iSsluovYbVJWIEoCmXz9MdkvRjQ_u39RlqAyy2A5dV3j3FzCEeD1kc0Wdng_zX5AhJ1kvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084341072</pqid></control><display><type>article</type><title>Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties</title><source>Elsevier</source><creator>Tahtouh, Jeffry ; Mohtar, Rabi ; Assi, Amjad ; Schwab, Paul ; Jantrania, Anish ; Deng, Youjun ; Munster, Clyde</creator><creatorcontrib>Tahtouh, Jeffry ; Mohtar, Rabi ; Assi, Amjad ; Schwab, Paul ; Jantrania, Anish ; Deng, Youjun ; Munster, Clyde</creatorcontrib><description>The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR < 13, ESP < 15, pH < 8.5, and EC < 4) were low, indicating no sodicity or salinity problems. Smectite, illite, and kaolinite were identified in the three B-horizon samples using bulk X-ray diffraction (XRD). Overall, no major changes were observed in the soil. Thus, TWW and BGW are viable replacements for freshwater irrigation in arid and semi-arid regions.
[Display omitted]
•Treated wastewater has a better quality than the brackish groundwater of the local aqufer•Calcareous clayey soil showed no salinity or sodicity problems after long-term (15 years) irrigation with non-freshwater•Clay mineralogy in this soil type is fairly stable and plays a major role in the fertility of the soil•Treated wastewater and brackish groundwater are viable substitutes for freshwater irrigation in semi-arid and arid regions</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2018.07.200</identifier><identifier>PMID: 30077859</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Brackish groundwater ; Irrigated agriculture ; Non-traditional water sources ; Soil chemistry ; Soil mineralogy ; Treated wastewater</subject><ispartof>The Science of the total environment, 2019-01, Vol.647, p.99-109</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793</citedby><cites>FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793</cites><orcidid>0000-0001-8206-6529 ; 0000-0002-3360-1334 ; 0000-0002-0702-6823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30077859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tahtouh, Jeffry</creatorcontrib><creatorcontrib>Mohtar, Rabi</creatorcontrib><creatorcontrib>Assi, Amjad</creatorcontrib><creatorcontrib>Schwab, Paul</creatorcontrib><creatorcontrib>Jantrania, Anish</creatorcontrib><creatorcontrib>Deng, Youjun</creatorcontrib><creatorcontrib>Munster, Clyde</creatorcontrib><title>Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR < 13, ESP < 15, pH < 8.5, and EC < 4) were low, indicating no sodicity or salinity problems. Smectite, illite, and kaolinite were identified in the three B-horizon samples using bulk X-ray diffraction (XRD). Overall, no major changes were observed in the soil. Thus, TWW and BGW are viable replacements for freshwater irrigation in arid and semi-arid regions.
[Display omitted]
•Treated wastewater has a better quality than the brackish groundwater of the local aqufer•Calcareous clayey soil showed no salinity or sodicity problems after long-term (15 years) irrigation with non-freshwater•Clay mineralogy in this soil type is fairly stable and plays a major role in the fertility of the soil•Treated wastewater and brackish groundwater are viable substitutes for freshwater irrigation in semi-arid and arid regions</description><subject>Brackish groundwater</subject><subject>Irrigated agriculture</subject><subject>Non-traditional water sources</subject><subject>Soil chemistry</subject><subject>Soil mineralogy</subject><subject>Treated wastewater</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAyEQhonRaP34C7pHL1sH6C7L0Rg_mph40TOhMCh1d6lANf57qVWvzuWdTJ6ZN_MSckZhSoG2F8tpMj6HjOP7lAHtpiCKwg6Z0E7ImgJrd8kEYNbVspXigBymtIRSoqP75ICXRnSNnBAzH1ba5Cq4ahG1efXppXqOYT3aD50xVnq0VY5Yelt96JRxOw5jlYLvK_OCgze6_-YGP2LUfXj-nqxiWGHMHtMx2XO6T3jyo0fk6eb68equvn-4nV9d3teG8wZqKzltpW2E4x1QJrRkTktoLOOcOuEk09jYFrUGSxvmHJ2BsNaKBTeL8jU_Iufbu8X6bY0pq8Eng32vRwzrpBh0Mz6jIFhBxRY1MaQU0alV9IOOn4qC2iSsluovYbVJWIEoCmXz9MdkvRjQ_u39RlqAyy2A5dV3j3FzCEeD1kc0Wdng_zX5AhJ1kvI</recordid><startdate>20190110</startdate><enddate>20190110</enddate><creator>Tahtouh, Jeffry</creator><creator>Mohtar, Rabi</creator><creator>Assi, Amjad</creator><creator>Schwab, Paul</creator><creator>Jantrania, Anish</creator><creator>Deng, Youjun</creator><creator>Munster, Clyde</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8206-6529</orcidid><orcidid>https://orcid.org/0000-0002-3360-1334</orcidid><orcidid>https://orcid.org/0000-0002-0702-6823</orcidid></search><sort><creationdate>20190110</creationdate><title>Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties</title><author>Tahtouh, Jeffry ; Mohtar, Rabi ; Assi, Amjad ; Schwab, Paul ; Jantrania, Anish ; Deng, Youjun ; Munster, Clyde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brackish groundwater</topic><topic>Irrigated agriculture</topic><topic>Non-traditional water sources</topic><topic>Soil chemistry</topic><topic>Soil mineralogy</topic><topic>Treated wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahtouh, Jeffry</creatorcontrib><creatorcontrib>Mohtar, Rabi</creatorcontrib><creatorcontrib>Assi, Amjad</creatorcontrib><creatorcontrib>Schwab, Paul</creatorcontrib><creatorcontrib>Jantrania, Anish</creatorcontrib><creatorcontrib>Deng, Youjun</creatorcontrib><creatorcontrib>Munster, Clyde</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahtouh, Jeffry</au><au>Mohtar, Rabi</au><au>Assi, Amjad</au><au>Schwab, Paul</au><au>Jantrania, Anish</au><au>Deng, Youjun</au><au>Munster, Clyde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2019-01-10</date><risdate>2019</risdate><volume>647</volume><spage>99</spage><epage>109</epage><pages>99-109</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>The long-term effect of using treated wastewater is not clearly defined: some researchers argue that it is better than freshwater for the soil health; others disapprove, claiming that irrigation with unconventional water resources causes soil degradation. This study assesses the impact of irrigation with non-traditional water on the chemical and mineralogical properties of a calcareous clayey soil from West Texas. The exponential rise in population and the realities of climate change contribute to the global increase in freshwater scarcity: non-conventional water sources, such as treated wastewater (TWW) and brackish groundwater (BGW), offer potentially attractive alternative water resources for irrigated agriculture. For this research, the differences between TWW and BGW were addressed by collecting and analyzing water samples for salt and nutrient content. Soil samples from three horizons (Ap, A, and B) were obtained from three different fields: Rainfed (RF), BGW irrigated, and TWW irrigated. Soil was analyzed for texture, salinity, sodicity, and carbon content. Clay mineralogy of the three different fields was analyzed using the B-horizons. The outcomes from the analysis showed that the BGW from the Lipan aquifer has higher salinity and is harder compared to TWW. Although the exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), and electroconductivity (EC) increased marginally compared to the control soil (RF), the soils were in good health, all the values of interest (SAR < 13, ESP < 15, pH < 8.5, and EC < 4) were low, indicating no sodicity or salinity problems. Smectite, illite, and kaolinite were identified in the three B-horizon samples using bulk X-ray diffraction (XRD). Overall, no major changes were observed in the soil. Thus, TWW and BGW are viable replacements for freshwater irrigation in arid and semi-arid regions.
[Display omitted]
•Treated wastewater has a better quality than the brackish groundwater of the local aqufer•Calcareous clayey soil showed no salinity or sodicity problems after long-term (15 years) irrigation with non-freshwater•Clay mineralogy in this soil type is fairly stable and plays a major role in the fertility of the soil•Treated wastewater and brackish groundwater are viable substitutes for freshwater irrigation in semi-arid and arid regions</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30077859</pmid><doi>10.1016/j.scitotenv.2018.07.200</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8206-6529</orcidid><orcidid>https://orcid.org/0000-0002-3360-1334</orcidid><orcidid>https://orcid.org/0000-0002-0702-6823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2019-01, Vol.647, p.99-109 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_2084341072 |
source | Elsevier |
subjects | Brackish groundwater Irrigated agriculture Non-traditional water sources Soil chemistry Soil mineralogy Treated wastewater |
title | Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20brackish%20groundwater%20and%20treated%20wastewater%20on%20soil%20chemical%20and%20mineralogical%20properties&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Tahtouh,%20Jeffry&rft.date=2019-01-10&rft.volume=647&rft.spage=99&rft.epage=109&rft.pages=99-109&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2018.07.200&rft_dat=%3Cproquest_cross%3E2084341072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3350-d93169d57f380127a92fa905d2331f7f92ae5d6eaa0d152ff1407ddd7b3cb8793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084341072&rft_id=info:pmid/30077859&rfr_iscdi=true |