Loading…

Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells

Macroautophagy/autophagy is a survival mechanism that facilitates protein turnover in post-mitotic cells in a lysosomal-dependent process. Mitophagy is a selective form of autophagy, which arbitrates the selective recognition and targeting of aberrant mitochondria for degradation. Mitochondrial cont...

Full description

Saved in:
Bibliographic Details
Published in:Autophagy 2018-11, Vol.14 (11), p.1886-1897
Main Authors: Parousis, Alexa, Carter, Heather N., Tran, Claudia, Erlich, Avigail T., Mesbah Moosavi, Zahra S., Pauly, Marion, Hood, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Macroautophagy/autophagy is a survival mechanism that facilitates protein turnover in post-mitotic cells in a lysosomal-dependent process. Mitophagy is a selective form of autophagy, which arbitrates the selective recognition and targeting of aberrant mitochondria for degradation. Mitochondrial content in cells is the net balance of mitochondrial catabolism via mitophagy, and organelle biogenesis. Although the latter process has been well described, mitophagy in skeletal muscle is less understood, and it is currently unknown how these two opposing mechanisms converge during contractile activity. Here we show that chronic contractile activity (CCA) in muscle cells induced mitochondrial biogenesis and coordinately enhanced the expression of TFEB (transcription factor EB) and PPARGC1A/PGC-1α, master regulators of lysosome and mitochondrial biogenesis, respectively. CCA also enhanced the expression of PINK1 and the lysosomal protease CTSD (cathepsin D). Autophagy blockade with bafilomycin A 1 (BafA) reduced mitochondrial state 3 and 4 respiration, increased ROS production and enhanced the accumulation of MAP1LC3B-II/LC3-II and SQSTM1/p62. CCA ameliorated this mitochondrial dysfunction during defective autophagy, increased PPARGC1A, normalized LC3-II levels and reversed mitochondrially-localized SQSTM1 toward control levels. NAC emulated the LC3-II reductions induced by contractile activity, signifying that a decrease in oxidative stress could represent a mechanism of autophagy normalization brought about by CCA. CCA enhances mitochondrial biogenesis and lysosomal activity, and normalizes autophagy flux during autophagy suppression, partly via ROS-dependent mechanisms. Thus, contractile activity represents a potential therapeutic intervention for diseases in which autophagy is inhibited, such as vacuolar myopathies in skeletal muscle, by establishing a healthy equilibrium of anabolic and catabolic pathways. Abbreviations: AMPK: AMP-activated protein kinase; BafA: bafilomycin A 1 ; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCA: chronic contractile activity; COX4I1: cytochrome c oxidase subunit 4I1; DMEM: Dulbecco's modified Eagle's medium; GFP: green fluorescent protein; LSD: lysosomal storage diseases; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PINK1: PTEN induced puta
ISSN:1554-8627
1554-8635
DOI:10.1080/15548627.2018.1491488