Loading…

Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana

Flagellin, a component of the flagellar filament of Pseudomonas syringae pv. tabaci 6605 (Pta), induces hypersensitive reaction in its non-host Arabidopsis thaliana. We identified the WRKY41 gene, which belongs to a multigene family encoding WRKY plant-specific transcription factors, as one of the f...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and genomics : MGG 2008-03, Vol.279 (3), p.303-312
Main Authors: Higashi, Kuniaki, Ishiga, Yasuhiro, Inagaki, Yoshishige, Toyoda, Kazuhiro, Shiraishi, Tomonori, Ichinose, Yuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flagellin, a component of the flagellar filament of Pseudomonas syringae pv. tabaci 6605 (Pta), induces hypersensitive reaction in its non-host Arabidopsis thaliana. We identified the WRKY41 gene, which belongs to a multigene family encoding WRKY plant-specific transcription factors, as one of the flagellin-inducible genes in A. thaliana. Expression of WRKY41 is induced by inoculation with the incompatible pathogen P. syringae pv. tomato DC3000 (Pto) possessing AvrRpt2 and the non-host pathogens Pta within 6-h after inoculation, but not by inoculation with the compatible Pto. Expression of WRKY41 was also induced by inoculation of A. thaliana with an hrp-type three secretion system (T3SS)-defective mutant of Pto, indicating that effectors produced by T3SS in the Pto wild-type suppress the activation of WRKY41. Arabidopsis overexpressing WRKY41 showed enhanced resistance to the Pto wild-type but increased susceptibility to Erwinia carotovora EC1. WRKY41-overexpressing Arabidopsis constitutively expresses the PR5 gene, but suppresses the methyl jasmonate-induced PDF1.2 gene expression. These results demonstrate that WRKY41 may be a key regulator in the cross talk of salicylic acid and jasmonic acid pathways.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-007-0315-0