Loading…

Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors

Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to sh...

Full description

Saved in:
Bibliographic Details
Published in:Biomechanics and modeling in mechanobiology 2019-02, Vol.18 (1), p.5-16
Main Authors: Shin, H., Haga, J. H., Kosawada, T., Kimura, K., Li, Y. S., Chien, S., Schmid-Schönbein, G. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33
cites cdi_FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33
container_end_page 16
container_issue 1
container_start_page 5
container_title Biomechanics and modeling in mechanobiology
container_volume 18
creator Shin, H.
Haga, J. H.
Kosawada, T.
Kimura, K.
Li, Y. S.
Chien, S.
Schmid-Schönbein, G. W.
description Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.
doi_str_mv 10.1007/s10237-018-1063-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2085668717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085668717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpycc2PyCXIuglF6cjybbk3krYTQKBQEl6FZJ23DjI1laSA_33kdkkhUJOkphnnhn0EnLK4JwByG-JAReyAqYqBq2o-AdyxFomK9nV8PHt3nSH5DilRwAOQokDcigAlGKMH5FpM0xIXZhyDJ6GnuK0DfkB_WA8_bW-3PysODUuD08mD2H6Tp15wuANUpNo7-dhS9MDmkhTjpjS8vAZY6mFSEccbTTFH9HhLoeYPpNPvfEJT17OFbnfrO8urqqb28vrix83lasVy1WnLChuZVm3aa1tAGtmRd30YJy0nas76CR228awxtW2aVvoESSHRgkBTogVOdt7dzH8mTFlPQ7JofdlmzAnzaGIWyWZLOjX_9DHMMepbLdQddtKAYuQ7SkXQ0oRe72Lw2jiX81AL2HofRi6hKGXMDQvPV9ezLMdcfvW8fr7BeB7IJXS9Bvjv9HvW58BqjaTNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084667303</pqid></control><display><type>article</type><title>Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors</title><source>Springer Nature</source><creator>Shin, H. ; Haga, J. H. ; Kosawada, T. ; Kimura, K. ; Li, Y. S. ; Chien, S. ; Schmid-Schönbein, G. W.</creator><creatorcontrib>Shin, H. ; Haga, J. H. ; Kosawada, T. ; Kimura, K. ; Li, Y. S. ; Chien, S. ; Schmid-Schönbein, G. W.</creatorcontrib><description>Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.</description><identifier>ISSN: 1617-7959</identifier><identifier>EISSN: 1617-7940</identifier><identifier>DOI: 10.1007/s10237-018-1063-2</identifier><identifier>PMID: 30088112</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activation ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Caveolae ; Cell surface ; Computational fluid dynamics ; Engineering ; Equations of motion ; Flow control ; Fluid flow ; Immunocytochemistry ; Invaginations ; Ligands ; Mechanical stimuli ; Mechanoreceptors ; Mechanotransduction ; Membranes ; Original Paper ; Receptors ; Shear stress ; Shelters ; Space life sciences ; Theoretical and Applied Mechanics ; Vascular endothelial growth factor receptor 2 ; Vascular endothelial growth factor receptors ; Western blotting</subject><ispartof>Biomechanics and modeling in mechanobiology, 2019-02, Vol.18 (1), p.5-16</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Biomechanics and Modeling in Mechanobiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33</citedby><cites>FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33</cites><orcidid>0000-0002-1615-0279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30088112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, H.</creatorcontrib><creatorcontrib>Haga, J. H.</creatorcontrib><creatorcontrib>Kosawada, T.</creatorcontrib><creatorcontrib>Kimura, K.</creatorcontrib><creatorcontrib>Li, Y. S.</creatorcontrib><creatorcontrib>Chien, S.</creatorcontrib><creatorcontrib>Schmid-Schönbein, G. W.</creatorcontrib><title>Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors</title><title>Biomechanics and modeling in mechanobiology</title><addtitle>Biomech Model Mechanobiol</addtitle><addtitle>Biomech Model Mechanobiol</addtitle><description>Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.</description><subject>Activation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Caveolae</subject><subject>Cell surface</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Immunocytochemistry</subject><subject>Invaginations</subject><subject>Ligands</subject><subject>Mechanical stimuli</subject><subject>Mechanoreceptors</subject><subject>Mechanotransduction</subject><subject>Membranes</subject><subject>Original Paper</subject><subject>Receptors</subject><subject>Shear stress</subject><subject>Shelters</subject><subject>Space life sciences</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vascular endothelial growth factor receptor 2</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Western blotting</subject><issn>1617-7959</issn><issn>1617-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQhkVpycc2PyCXIuglF6cjybbk3krYTQKBQEl6FZJ23DjI1laSA_33kdkkhUJOkphnnhn0EnLK4JwByG-JAReyAqYqBq2o-AdyxFomK9nV8PHt3nSH5DilRwAOQokDcigAlGKMH5FpM0xIXZhyDJ6GnuK0DfkB_WA8_bW-3PysODUuD08mD2H6Tp15wuANUpNo7-dhS9MDmkhTjpjS8vAZY6mFSEccbTTFH9HhLoeYPpNPvfEJT17OFbnfrO8urqqb28vrix83lasVy1WnLChuZVm3aa1tAGtmRd30YJy0nas76CR228awxtW2aVvoESSHRgkBTogVOdt7dzH8mTFlPQ7JofdlmzAnzaGIWyWZLOjX_9DHMMepbLdQddtKAYuQ7SkXQ0oRe72Lw2jiX81AL2HofRi6hKGXMDQvPV9ezLMdcfvW8fr7BeB7IJXS9Bvjv9HvW58BqjaTNA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Shin, H.</creator><creator>Haga, J. H.</creator><creator>Kosawada, T.</creator><creator>Kimura, K.</creator><creator>Li, Y. S.</creator><creator>Chien, S.</creator><creator>Schmid-Schönbein, G. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TB</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1615-0279</orcidid></search><sort><creationdate>20190201</creationdate><title>Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors</title><author>Shin, H. ; Haga, J. H. ; Kosawada, T. ; Kimura, K. ; Li, Y. S. ; Chien, S. ; Schmid-Schönbein, G. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Caveolae</topic><topic>Cell surface</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Immunocytochemistry</topic><topic>Invaginations</topic><topic>Ligands</topic><topic>Mechanical stimuli</topic><topic>Mechanoreceptors</topic><topic>Mechanotransduction</topic><topic>Membranes</topic><topic>Original Paper</topic><topic>Receptors</topic><topic>Shear stress</topic><topic>Shelters</topic><topic>Space life sciences</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vascular endothelial growth factor receptor 2</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, H.</creatorcontrib><creatorcontrib>Haga, J. H.</creatorcontrib><creatorcontrib>Kosawada, T.</creatorcontrib><creatorcontrib>Kimura, K.</creatorcontrib><creatorcontrib>Li, Y. S.</creatorcontrib><creatorcontrib>Chien, S.</creatorcontrib><creatorcontrib>Schmid-Schönbein, G. W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biomechanics and modeling in mechanobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, H.</au><au>Haga, J. H.</au><au>Kosawada, T.</au><au>Kimura, K.</au><au>Li, Y. S.</au><au>Chien, S.</au><au>Schmid-Schönbein, G. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors</atitle><jtitle>Biomechanics and modeling in mechanobiology</jtitle><stitle>Biomech Model Mechanobiol</stitle><addtitle>Biomech Model Mechanobiol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>18</volume><issue>1</issue><spage>5</spage><epage>16</epage><pages>5-16</pages><issn>1617-7959</issn><eissn>1617-7940</eissn><abstract>Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30088112</pmid><doi>10.1007/s10237-018-1063-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1615-0279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-7959
ispartof Biomechanics and modeling in mechanobiology, 2019-02, Vol.18 (1), p.5-16
issn 1617-7959
1617-7940
language eng
recordid cdi_proquest_miscellaneous_2085668717
source Springer Nature
subjects Activation
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Caveolae
Cell surface
Computational fluid dynamics
Engineering
Equations of motion
Flow control
Fluid flow
Immunocytochemistry
Invaginations
Ligands
Mechanical stimuli
Mechanoreceptors
Mechanotransduction
Membranes
Original Paper
Receptors
Shear stress
Shelters
Space life sciences
Theoretical and Applied Mechanics
Vascular endothelial growth factor receptor 2
Vascular endothelial growth factor receptors
Western blotting
title Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine%20control%20of%20endothelial%20VEGFR-2%20activation:%20caveolae%20as%20fluid%20shear%20stress%20shelters%20for%20membrane%20receptors&rft.jtitle=Biomechanics%20and%20modeling%20in%20mechanobiology&rft.au=Shin,%20H.&rft.date=2019-02-01&rft.volume=18&rft.issue=1&rft.spage=5&rft.epage=16&rft.pages=5-16&rft.issn=1617-7959&rft.eissn=1617-7940&rft_id=info:doi/10.1007/s10237-018-1063-2&rft_dat=%3Cproquest_cross%3E2085668717%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c481t-98b082b703856bb50e41b345f0ac7b9c49097e9d5a15c4b5660fe072058330c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084667303&rft_id=info:pmid/30088112&rfr_iscdi=true