Loading…

Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test

Background Postoperative risk assessment remains an important variable in the effective treatment of prostate cancer. There is an unmet clinical need for a test with the potential to enhance the Gleason grading system with novel features that more accurately reflect a personalized prediction of clin...

Full description

Saved in:
Bibliographic Details
Published in:Prostate cancer and prostatic diseases 2018-11, Vol.21 (4), p.594-603
Main Authors: Donovan, Michael J., Fernandez, Gerardo, Scott, Richard, Khan, Faisal M., Zeineh, Jack, Koll, Giovanni, Gladoun, Nataliya, Charytonowicz, Elizabeth, Tewari, Ash, Cordon-Cardo, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3
cites cdi_FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3
container_end_page 603
container_issue 4
container_start_page 594
container_title Prostate cancer and prostatic diseases
container_volume 21
creator Donovan, Michael J.
Fernandez, Gerardo
Scott, Richard
Khan, Faisal M.
Zeineh, Jack
Koll, Giovanni
Gladoun, Nataliya
Charytonowicz, Elizabeth
Tewari, Ash
Cordon-Cardo, Carlos
description Background Postoperative risk assessment remains an important variable in the effective treatment of prostate cancer. There is an unmet clinical need for a test with the potential to enhance the Gleason grading system with novel features that more accurately reflect a personalized prediction of clinical failure. Methods A prospectively designed retrospective study utilizing 892 patients, post radical prostatectomy, followed for a median of 8 years. In training, using digital image analysis to combine microscopic pattern analysis/machine learning with biomarkers, we evaluated Precise Post-op model results to predict clinical failure in 446 patients. The derived prognostic score was validated in 446 patients. Eligible subjects required complete clinical-pathologic variables and were excluded if they had received neoadjuvant treatment including androgen deprivation, radiation or chemotherapy prior to surgery. No patients were enrolled with metastatic disease prior to surgery. Evaluate the assay using time to event concordance index (C-index), Kaplan–Meier, and hazards ratio. Results In the training cohort ( n  = 306), the Precise Post-op test predicted significant clinical failure with a C-index of 0.82, [95% CI: 0.76–0.86], HR:6.7, [95% CI: 3.59–12.45], p  
doi_str_mv 10.1038/s41391-018-0067-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2085671722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573239413</galeid><sourcerecordid>A573239413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3</originalsourceid><addsrcrecordid>eNp1kl1v1iAYhhujcR_6AzwxJCZmJ51AC7SHy9RpssQTPSYUnrYsFF6Bvsn-jz9Uunc6ZzQcQPJc9_PFXVWvCD4nuOnepZY0Pakx6WqMuajbJ9UxaQWvGcfd0_JuOKtFx-hRdZLSDca4Jz1-Xh01GHeipfy4-vEe9uDCbgGfkfIG7ZWzRmUbPAojUsiHEkdqzWFRGQy6cqBSCU5RGbhTLMGBXp2KaBfDaB2gPKuMDIzWFwLNdprdbQmCsTrbPWxcyiUb0spruNNNEVLaiio3hWjzvNSDSqVehpRfVM9G5RK8vL9Pq28fP3y9_FRff7n6fHlxXetW4Fy3GFNKOOs148pw3TFDBuAdBYapEKNmPfQDaQaD-0G1A9HAeG86IjhTg4HmtDo75C0NfV9LYbnYpME55SGsSVLcMS6IoLSgb_5Cb8IafelOUsIIxS3u8QM1KQfS-jHkqPSWVF4w0dCmLz9YqPN_UOUYWKwOHralPha8_UMwg3J5TsGt26-lxyA5gLpsPEUY5S7aRcVbSbDcLCQPFpLFQnKzkGyL5vX9ZOuwgPmt-OWZAtADkErITxAfRv9_1p_xDtG9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151204090</pqid></control><display><type>article</type><title>Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test</title><source>Springer Nature</source><creator>Donovan, Michael J. ; Fernandez, Gerardo ; Scott, Richard ; Khan, Faisal M. ; Zeineh, Jack ; Koll, Giovanni ; Gladoun, Nataliya ; Charytonowicz, Elizabeth ; Tewari, Ash ; Cordon-Cardo, Carlos</creator><creatorcontrib>Donovan, Michael J. ; Fernandez, Gerardo ; Scott, Richard ; Khan, Faisal M. ; Zeineh, Jack ; Koll, Giovanni ; Gladoun, Nataliya ; Charytonowicz, Elizabeth ; Tewari, Ash ; Cordon-Cardo, Carlos</creatorcontrib><description>Background Postoperative risk assessment remains an important variable in the effective treatment of prostate cancer. There is an unmet clinical need for a test with the potential to enhance the Gleason grading system with novel features that more accurately reflect a personalized prediction of clinical failure. Methods A prospectively designed retrospective study utilizing 892 patients, post radical prostatectomy, followed for a median of 8 years. In training, using digital image analysis to combine microscopic pattern analysis/machine learning with biomarkers, we evaluated Precise Post-op model results to predict clinical failure in 446 patients. The derived prognostic score was validated in 446 patients. Eligible subjects required complete clinical-pathologic variables and were excluded if they had received neoadjuvant treatment including androgen deprivation, radiation or chemotherapy prior to surgery. No patients were enrolled with metastatic disease prior to surgery. Evaluate the assay using time to event concordance index (C-index), Kaplan–Meier, and hazards ratio. Results In the training cohort ( n  = 306), the Precise Post-op test predicted significant clinical failure with a C-index of 0.82, [95% CI: 0.76–0.86], HR:6.7, [95% CI: 3.59–12.45], p  &lt; 0.00001. Results were confirmed in validation ( n  = 284) with a C-index 0.77 [95% CI: 0.72–0.81], HR = 5.4, [95% CI: 2.74–10.52], p  &lt; 0.00001. By comparison, a clinical feature base model had a C-index of 0.70 with a HR = 3.7. The Post-Op test also re-classified 58% of CAPRA-S intermediate risk patients as low risk for clinical failure. Conclusions Precise Post-op tissue-based test discriminates low from intermediate high risk prostate cancer disease progression in the postoperative setting. Guided by machine learning, the test enhances traditional Gleason grading with novel features that accurately reflect the biology of personalized risk assignment.</description><identifier>ISSN: 1365-7852</identifier><identifier>EISSN: 1476-5608</identifier><identifier>DOI: 10.1038/s41391-018-0067-4</identifier><identifier>PMID: 30087426</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/51 ; 14/35 ; 631/67 ; 692/53 ; Algorithms ; Analysis ; Artificial intelligence ; Biological markers ; Biomarkers ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Cancer metastasis ; Cancer Research ; Cancer surgery ; Cancer therapies ; Cancer treatment ; Chemotherapy ; Deprivation ; Development and progression ; Digital imaging ; Evaluation ; Failure ; Hazards ; Health risks ; Image analysis ; Image processing ; Learning algorithms ; Machine learning ; Mathematical models ; Medical research ; Medical schools ; Metastases ; Patients ; Pattern analysis ; Predictions ; Prostate cancer ; Prostatectomy ; Radiation ; Radiation (Physics) ; Risk assessment ; Surgery ; Training ; Urological surgery</subject><ispartof>Prostate cancer and prostatic diseases, 2018-11, Vol.21 (4), p.594-603</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3</citedby><cites>FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3</cites><orcidid>0000-0003-0858-5624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30087426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donovan, Michael J.</creatorcontrib><creatorcontrib>Fernandez, Gerardo</creatorcontrib><creatorcontrib>Scott, Richard</creatorcontrib><creatorcontrib>Khan, Faisal M.</creatorcontrib><creatorcontrib>Zeineh, Jack</creatorcontrib><creatorcontrib>Koll, Giovanni</creatorcontrib><creatorcontrib>Gladoun, Nataliya</creatorcontrib><creatorcontrib>Charytonowicz, Elizabeth</creatorcontrib><creatorcontrib>Tewari, Ash</creatorcontrib><creatorcontrib>Cordon-Cardo, Carlos</creatorcontrib><title>Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test</title><title>Prostate cancer and prostatic diseases</title><addtitle>Prostate Cancer Prostatic Dis</addtitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><description>Background Postoperative risk assessment remains an important variable in the effective treatment of prostate cancer. There is an unmet clinical need for a test with the potential to enhance the Gleason grading system with novel features that more accurately reflect a personalized prediction of clinical failure. Methods A prospectively designed retrospective study utilizing 892 patients, post radical prostatectomy, followed for a median of 8 years. In training, using digital image analysis to combine microscopic pattern analysis/machine learning with biomarkers, we evaluated Precise Post-op model results to predict clinical failure in 446 patients. The derived prognostic score was validated in 446 patients. Eligible subjects required complete clinical-pathologic variables and were excluded if they had received neoadjuvant treatment including androgen deprivation, radiation or chemotherapy prior to surgery. No patients were enrolled with metastatic disease prior to surgery. Evaluate the assay using time to event concordance index (C-index), Kaplan–Meier, and hazards ratio. Results In the training cohort ( n  = 306), the Precise Post-op test predicted significant clinical failure with a C-index of 0.82, [95% CI: 0.76–0.86], HR:6.7, [95% CI: 3.59–12.45], p  &lt; 0.00001. Results were confirmed in validation ( n  = 284) with a C-index 0.77 [95% CI: 0.72–0.81], HR = 5.4, [95% CI: 2.74–10.52], p  &lt; 0.00001. By comparison, a clinical feature base model had a C-index of 0.70 with a HR = 3.7. The Post-Op test also re-classified 58% of CAPRA-S intermediate risk patients as low risk for clinical failure. Conclusions Precise Post-op tissue-based test discriminates low from intermediate high risk prostate cancer disease progression in the postoperative setting. Guided by machine learning, the test enhances traditional Gleason grading with novel features that accurately reflect the biology of personalized risk assignment.</description><subject>13/1</subject><subject>13/51</subject><subject>14/35</subject><subject>631/67</subject><subject>692/53</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer metastasis</subject><subject>Cancer Research</subject><subject>Cancer surgery</subject><subject>Cancer therapies</subject><subject>Cancer treatment</subject><subject>Chemotherapy</subject><subject>Deprivation</subject><subject>Development and progression</subject><subject>Digital imaging</subject><subject>Evaluation</subject><subject>Failure</subject><subject>Hazards</subject><subject>Health risks</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medical schools</subject><subject>Metastases</subject><subject>Patients</subject><subject>Pattern analysis</subject><subject>Predictions</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Radiation</subject><subject>Radiation (Physics)</subject><subject>Risk assessment</subject><subject>Surgery</subject><subject>Training</subject><subject>Urological surgery</subject><issn>1365-7852</issn><issn>1476-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kl1v1iAYhhujcR_6AzwxJCZmJ51AC7SHy9RpssQTPSYUnrYsFF6Bvsn-jz9Uunc6ZzQcQPJc9_PFXVWvCD4nuOnepZY0Pakx6WqMuajbJ9UxaQWvGcfd0_JuOKtFx-hRdZLSDca4Jz1-Xh01GHeipfy4-vEe9uDCbgGfkfIG7ZWzRmUbPAojUsiHEkdqzWFRGQy6cqBSCU5RGbhTLMGBXp2KaBfDaB2gPKuMDIzWFwLNdprdbQmCsTrbPWxcyiUb0spruNNNEVLaiio3hWjzvNSDSqVehpRfVM9G5RK8vL9Pq28fP3y9_FRff7n6fHlxXetW4Fy3GFNKOOs148pw3TFDBuAdBYapEKNmPfQDaQaD-0G1A9HAeG86IjhTg4HmtDo75C0NfV9LYbnYpME55SGsSVLcMS6IoLSgb_5Cb8IafelOUsIIxS3u8QM1KQfS-jHkqPSWVF4w0dCmLz9YqPN_UOUYWKwOHralPha8_UMwg3J5TsGt26-lxyA5gLpsPEUY5S7aRcVbSbDcLCQPFpLFQnKzkGyL5vX9ZOuwgPmt-OWZAtADkErITxAfRv9_1p_xDtG9</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Donovan, Michael J.</creator><creator>Fernandez, Gerardo</creator><creator>Scott, Richard</creator><creator>Khan, Faisal M.</creator><creator>Zeineh, Jack</creator><creator>Koll, Giovanni</creator><creator>Gladoun, Nataliya</creator><creator>Charytonowicz, Elizabeth</creator><creator>Tewari, Ash</creator><creator>Cordon-Cardo, Carlos</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7Z</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0858-5624</orcidid></search><sort><creationdate>20181101</creationdate><title>Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test</title><author>Donovan, Michael J. ; Fernandez, Gerardo ; Scott, Richard ; Khan, Faisal M. ; Zeineh, Jack ; Koll, Giovanni ; Gladoun, Nataliya ; Charytonowicz, Elizabeth ; Tewari, Ash ; Cordon-Cardo, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/1</topic><topic>13/51</topic><topic>14/35</topic><topic>631/67</topic><topic>692/53</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer metastasis</topic><topic>Cancer Research</topic><topic>Cancer surgery</topic><topic>Cancer therapies</topic><topic>Cancer treatment</topic><topic>Chemotherapy</topic><topic>Deprivation</topic><topic>Development and progression</topic><topic>Digital imaging</topic><topic>Evaluation</topic><topic>Failure</topic><topic>Hazards</topic><topic>Health risks</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medical schools</topic><topic>Metastases</topic><topic>Patients</topic><topic>Pattern analysis</topic><topic>Predictions</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Radiation</topic><topic>Radiation (Physics)</topic><topic>Risk assessment</topic><topic>Surgery</topic><topic>Training</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donovan, Michael J.</creatorcontrib><creatorcontrib>Fernandez, Gerardo</creatorcontrib><creatorcontrib>Scott, Richard</creatorcontrib><creatorcontrib>Khan, Faisal M.</creatorcontrib><creatorcontrib>Zeineh, Jack</creatorcontrib><creatorcontrib>Koll, Giovanni</creatorcontrib><creatorcontrib>Gladoun, Nataliya</creatorcontrib><creatorcontrib>Charytonowicz, Elizabeth</creatorcontrib><creatorcontrib>Tewari, Ash</creatorcontrib><creatorcontrib>Cordon-Cardo, Carlos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Prostate cancer and prostatic diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donovan, Michael J.</au><au>Fernandez, Gerardo</au><au>Scott, Richard</au><au>Khan, Faisal M.</au><au>Zeineh, Jack</au><au>Koll, Giovanni</au><au>Gladoun, Nataliya</au><au>Charytonowicz, Elizabeth</au><au>Tewari, Ash</au><au>Cordon-Cardo, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test</atitle><jtitle>Prostate cancer and prostatic diseases</jtitle><stitle>Prostate Cancer Prostatic Dis</stitle><addtitle>Prostate Cancer Prostatic Dis</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>21</volume><issue>4</issue><spage>594</spage><epage>603</epage><pages>594-603</pages><issn>1365-7852</issn><eissn>1476-5608</eissn><abstract>Background Postoperative risk assessment remains an important variable in the effective treatment of prostate cancer. There is an unmet clinical need for a test with the potential to enhance the Gleason grading system with novel features that more accurately reflect a personalized prediction of clinical failure. Methods A prospectively designed retrospective study utilizing 892 patients, post radical prostatectomy, followed for a median of 8 years. In training, using digital image analysis to combine microscopic pattern analysis/machine learning with biomarkers, we evaluated Precise Post-op model results to predict clinical failure in 446 patients. The derived prognostic score was validated in 446 patients. Eligible subjects required complete clinical-pathologic variables and were excluded if they had received neoadjuvant treatment including androgen deprivation, radiation or chemotherapy prior to surgery. No patients were enrolled with metastatic disease prior to surgery. Evaluate the assay using time to event concordance index (C-index), Kaplan–Meier, and hazards ratio. Results In the training cohort ( n  = 306), the Precise Post-op test predicted significant clinical failure with a C-index of 0.82, [95% CI: 0.76–0.86], HR:6.7, [95% CI: 3.59–12.45], p  &lt; 0.00001. Results were confirmed in validation ( n  = 284) with a C-index 0.77 [95% CI: 0.72–0.81], HR = 5.4, [95% CI: 2.74–10.52], p  &lt; 0.00001. By comparison, a clinical feature base model had a C-index of 0.70 with a HR = 3.7. The Post-Op test also re-classified 58% of CAPRA-S intermediate risk patients as low risk for clinical failure. Conclusions Precise Post-op tissue-based test discriminates low from intermediate high risk prostate cancer disease progression in the postoperative setting. Guided by machine learning, the test enhances traditional Gleason grading with novel features that accurately reflect the biology of personalized risk assignment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30087426</pmid><doi>10.1038/s41391-018-0067-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0858-5624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-7852
ispartof Prostate cancer and prostatic diseases, 2018-11, Vol.21 (4), p.594-603
issn 1365-7852
1476-5608
language eng
recordid cdi_proquest_miscellaneous_2085671722
source Springer Nature
subjects 13/1
13/51
14/35
631/67
692/53
Algorithms
Analysis
Artificial intelligence
Biological markers
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cancer
Cancer metastasis
Cancer Research
Cancer surgery
Cancer therapies
Cancer treatment
Chemotherapy
Deprivation
Development and progression
Digital imaging
Evaluation
Failure
Hazards
Health risks
Image analysis
Image processing
Learning algorithms
Machine learning
Mathematical models
Medical research
Medical schools
Metastases
Patients
Pattern analysis
Predictions
Prostate cancer
Prostatectomy
Radiation
Radiation (Physics)
Risk assessment
Surgery
Training
Urological surgery
title Development and validation of a novel automated Gleason grade and molecular profile that define a highly predictive prostate cancer progression algorithm-based test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20validation%20of%20a%20novel%20automated%20Gleason%20grade%20and%20molecular%20profile%20that%20define%20a%20highly%20predictive%20prostate%20cancer%20progression%20algorithm-based%20test&rft.jtitle=Prostate%20cancer%20and%20prostatic%20diseases&rft.au=Donovan,%20Michael%20J.&rft.date=2018-11-01&rft.volume=21&rft.issue=4&rft.spage=594&rft.epage=603&rft.pages=594-603&rft.issn=1365-7852&rft.eissn=1476-5608&rft_id=info:doi/10.1038/s41391-018-0067-4&rft_dat=%3Cgale_proqu%3EA573239413%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-400221659c56ad6c85d1be682e50277fc59e9b13bd09ba4b1ce569d81765abde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2151204090&rft_id=info:pmid/30087426&rft_galeid=A573239413&rfr_iscdi=true