Loading…

An ontology for landscapes

As ecological data increases in breadth, depth, and complexity, the discipline of ecology is increasingly influenced by information science. While this influence provides many opportunities for ecologists, it also necessitates a change in how we manage and share data, and perhaps more fundamentally,...

Full description

Saved in:
Bibliographic Details
Published in:Ecological complexity 2008-09, Vol.5 (3), p.272-279
Main Authors: Lepczyk, Christopher A., Lortie, Christopher J., Anderson, Laurel J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As ecological data increases in breadth, depth, and complexity, the discipline of ecology is increasingly influenced by information science. While this influence provides many opportunities for ecologists, it also necessitates a change in how we manage and share data, and perhaps more fundamentally, define concepts in ecology. Specifically, the information technology process of automated data integration entirely depends upon consistent concept definition. A common tool used in computer science and engineering to specify meanings, which is both novel and offers significant potential to ecology, is an ontology. An ontology is a formal representation of knowledge in which concepts are described by their meaning and their relationship to each other. Ontologies are a tool that can be used to ‘explicitly specify a concept’ (Gruber, 1993) and this approach is uncommon in ecology. In this paper, we develop an ontology for the concept of ‘landscape’ that captures the most general definitions and usages of this term. We selected the concept of landscape because it is often used in very different ways by investigators and hence generates linguistic uncertainty. A graphic theoretic (i.e., visual) model is provided which describes the set of structuring rules we used to define the relationships between ‘landscape’ and appropriately related terms. Based upon these rules, a landscape necessarily contains a spatial component (i.e., area), structure and function (i.e., ecosystems), and is scale independent. This approach provides the set of necessary conditions for landscape studies to reduce linguistic uncertainty, and facilitate interoperability of data, i.e., in a manner that promotes data linkages and quantitative synthesis particularly by automatic data synthesis programs that are likely to become an important part of ecology in the future. Simply put, we use an ontology, a technique novel to ecology but not other disciplines, to define ‘landscape,’ thereby clearly delineating one subset of its potential general usage. As such this ontology can serve as both a checklist for landscape studies and a blueprint for additional ecological ontologies.
ISSN:1476-945X
DOI:10.1016/j.ecocom.2008.04.001