Loading…

Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?

Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is importan...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2018-09, Vol.10 (33), p.15624-15631
Main Authors: Ma, Huizhong, Feng, Jin, Fan, Jin, Wei, Min, Liu, Chengbu, Ma, Yuchen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 15631
container_issue 33
container_start_page 15624
container_title Nanoscale
container_volume 10
creator Ma, Huizhong
Feng, Jin
Fan, Jin
Wei, Min
Liu, Chengbu
Ma, Yuchen
description Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is important to clarify the behavior of photogenerated holes in the OER. In this work, we investigate the energy level alignment using the GW method and the exciton properties using the Bethe–Salpeter equation within the ab initio many-body Green's function theory at the g-C3N4/water interface. We found that the g-C3N4 substrate can elevate energy levels of OH− and H2O molecules at the interface by up to 0.6 eV. This effect can make the electronic levels of OH− surpass the valence band maximum (VBM) of g-C3N4. However, orbital energies of H2O molecules remain far below the VBM of g-C3N4. This indicates that a photogenerated hole after exciting g-C3N4 can relax to OH− instead of neutral H2O. Moreover, OH− could be directly oxidized through electron transfer from OH− to g-C3N4 by light near the optical absorption edge of g-C3N4, which is beneficial for efficient carrier separation at the interface.
doi_str_mv 10.1039/c8nr04505d
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2086260105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2086260105</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-fc90c9f9bcf31ee55a91cb62ecf0c246d3ef0efa2d52ffb69a3461e5eb0690c93</originalsourceid><addsrcrecordid>eNpdj8FKAzEQhoMoWKsXnyDgxcvaSbKJjReRUq1Q7EXxWLLZSXfLulmTFF_Bs4_okxioePAyM3zzz88_hJwzuGIg9MRO-wClBFkfkBGHEgohrvnh36zKY3IS4xZAaaHEiJjXBgPS2tOh8clvsMdgEta08R1GahJNDdJNMRNP5eQjbwJt-1ydsRl76nygexyHrk2p7Tc3dMFXNPPV4vvz6_aUHDnTRTz77WPycj9_ni2K5erhcXa3LAZWqlQ4q8FqpyvrBEOU0mhmK8XROrC8VLVAB-gMryV3rlLaiFIxlFjlV_KlGJPLve8Q_PsOY1q_tdFi15ke_S6uOUwVV8BAZunFP-nW70Kf02WV5iwbciF-AO4dZLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092169023</pqid></control><display><type>article</type><title>Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?</title><source>Royal Society of Chemistry</source><creator>Ma, Huizhong ; Feng, Jin ; Fan, Jin ; Wei, Min ; Liu, Chengbu ; Ma, Yuchen</creator><creatorcontrib>Ma, Huizhong ; Feng, Jin ; Fan, Jin ; Wei, Min ; Liu, Chengbu ; Ma, Yuchen</creatorcontrib><description>Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is important to clarify the behavior of photogenerated holes in the OER. In this work, we investigate the energy level alignment using the GW method and the exciton properties using the Bethe–Salpeter equation within the ab initio many-body Green's function theory at the g-C3N4/water interface. We found that the g-C3N4 substrate can elevate energy levels of OH− and H2O molecules at the interface by up to 0.6 eV. This effect can make the electronic levels of OH− surpass the valence band maximum (VBM) of g-C3N4. However, orbital energies of H2O molecules remain far below the VBM of g-C3N4. This indicates that a photogenerated hole after exciting g-C3N4 can relax to OH− instead of neutral H2O. Moreover, OH− could be directly oxidized through electron transfer from OH− to g-C3N4 by light near the optical absorption edge of g-C3N4, which is beneficial for efficient carrier separation at the interface.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr04505d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bethe-Salpeter equation ; Carbon nitride ; Electron transfer ; Energy levels ; Green's functions ; Oxygen evolution reactions ; Photocatalysis ; Quantum efficiency ; Substrates ; Valence band ; Water chemistry ; Water splitting</subject><ispartof>Nanoscale, 2018-09, Vol.10 (33), p.15624-15631</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ma, Huizhong</creatorcontrib><creatorcontrib>Feng, Jin</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Wei, Min</creatorcontrib><creatorcontrib>Liu, Chengbu</creatorcontrib><creatorcontrib>Ma, Yuchen</creatorcontrib><title>Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?</title><title>Nanoscale</title><description>Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is important to clarify the behavior of photogenerated holes in the OER. In this work, we investigate the energy level alignment using the GW method and the exciton properties using the Bethe–Salpeter equation within the ab initio many-body Green's function theory at the g-C3N4/water interface. We found that the g-C3N4 substrate can elevate energy levels of OH− and H2O molecules at the interface by up to 0.6 eV. This effect can make the electronic levels of OH− surpass the valence band maximum (VBM) of g-C3N4. However, orbital energies of H2O molecules remain far below the VBM of g-C3N4. This indicates that a photogenerated hole after exciting g-C3N4 can relax to OH− instead of neutral H2O. Moreover, OH− could be directly oxidized through electron transfer from OH− to g-C3N4 by light near the optical absorption edge of g-C3N4, which is beneficial for efficient carrier separation at the interface.</description><subject>Bethe-Salpeter equation</subject><subject>Carbon nitride</subject><subject>Electron transfer</subject><subject>Energy levels</subject><subject>Green's functions</subject><subject>Oxygen evolution reactions</subject><subject>Photocatalysis</subject><subject>Quantum efficiency</subject><subject>Substrates</subject><subject>Valence band</subject><subject>Water chemistry</subject><subject>Water splitting</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdj8FKAzEQhoMoWKsXnyDgxcvaSbKJjReRUq1Q7EXxWLLZSXfLulmTFF_Bs4_okxioePAyM3zzz88_hJwzuGIg9MRO-wClBFkfkBGHEgohrvnh36zKY3IS4xZAaaHEiJjXBgPS2tOh8clvsMdgEta08R1GahJNDdJNMRNP5eQjbwJt-1ydsRl76nygexyHrk2p7Tc3dMFXNPPV4vvz6_aUHDnTRTz77WPycj9_ni2K5erhcXa3LAZWqlQ4q8FqpyvrBEOU0mhmK8XROrC8VLVAB-gMryV3rlLaiFIxlFjlV_KlGJPLve8Q_PsOY1q_tdFi15ke_S6uOUwVV8BAZunFP-nW70Kf02WV5iwbciF-AO4dZLI</recordid><startdate>20180907</startdate><enddate>20180907</enddate><creator>Ma, Huizhong</creator><creator>Feng, Jin</creator><creator>Fan, Jin</creator><creator>Wei, Min</creator><creator>Liu, Chengbu</creator><creator>Ma, Yuchen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180907</creationdate><title>Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?</title><author>Ma, Huizhong ; Feng, Jin ; Fan, Jin ; Wei, Min ; Liu, Chengbu ; Ma, Yuchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-fc90c9f9bcf31ee55a91cb62ecf0c246d3ef0efa2d52ffb69a3461e5eb0690c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bethe-Salpeter equation</topic><topic>Carbon nitride</topic><topic>Electron transfer</topic><topic>Energy levels</topic><topic>Green's functions</topic><topic>Oxygen evolution reactions</topic><topic>Photocatalysis</topic><topic>Quantum efficiency</topic><topic>Substrates</topic><topic>Valence band</topic><topic>Water chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Huizhong</creatorcontrib><creatorcontrib>Feng, Jin</creatorcontrib><creatorcontrib>Fan, Jin</creatorcontrib><creatorcontrib>Wei, Min</creatorcontrib><creatorcontrib>Liu, Chengbu</creatorcontrib><creatorcontrib>Ma, Yuchen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Huizhong</au><au>Feng, Jin</au><au>Fan, Jin</au><au>Wei, Min</au><au>Liu, Chengbu</au><au>Ma, Yuchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?</atitle><jtitle>Nanoscale</jtitle><date>2018-09-07</date><risdate>2018</risdate><volume>10</volume><issue>33</issue><spage>15624</spage><epage>15631</epage><pages>15624-15631</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Graphitic carbon nitride (g-C3N4), a metal-free two-dimensional photocatalyst, has drawn increasing attention due to its application in photocatalytic water splitting. However, its quantum efficiency is limited by the poor performance of the oxygen evolution reaction (OER). Therefore, it is important to clarify the behavior of photogenerated holes in the OER. In this work, we investigate the energy level alignment using the GW method and the exciton properties using the Bethe–Salpeter equation within the ab initio many-body Green's function theory at the g-C3N4/water interface. We found that the g-C3N4 substrate can elevate energy levels of OH− and H2O molecules at the interface by up to 0.6 eV. This effect can make the electronic levels of OH− surpass the valence band maximum (VBM) of g-C3N4. However, orbital energies of H2O molecules remain far below the VBM of g-C3N4. This indicates that a photogenerated hole after exciting g-C3N4 can relax to OH− instead of neutral H2O. Moreover, OH− could be directly oxidized through electron transfer from OH− to g-C3N4 by light near the optical absorption edge of g-C3N4, which is beneficial for efficient carrier separation at the interface.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8nr04505d</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-09, Vol.10 (33), p.15624-15631
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2086260105
source Royal Society of Chemistry
subjects Bethe-Salpeter equation
Carbon nitride
Electron transfer
Energy levels
Green's functions
Oxygen evolution reactions
Photocatalysis
Quantum efficiency
Substrates
Valence band
Water chemistry
Water splitting
title Where do photogenerated holes at the g-C3N4/water interface go for water splitting: H2O or OH−?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Where%20do%20photogenerated%20holes%20at%20the%20g-C3N4/water%20interface%20go%20for%20water%20splitting:%20H2O%20or%20OH%E2%88%92?&rft.jtitle=Nanoscale&rft.au=Ma,%20Huizhong&rft.date=2018-09-07&rft.volume=10&rft.issue=33&rft.spage=15624&rft.epage=15631&rft.pages=15624-15631&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr04505d&rft_dat=%3Cproquest%3E2086260105%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p146t-fc90c9f9bcf31ee55a91cb62ecf0c246d3ef0efa2d52ffb69a3461e5eb0690c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2092169023&rft_id=info:pmid/&rfr_iscdi=true