Loading…

Lipid storage in marine zooplankton

Zooplankton storage lipids play an important role during reproduction, food scarcity, ontogeny and diapause, as shown by studies in various oceanic regions. While triacylglycerols, the primary storage lipid of terrestrial animals, are found in almost all zooplankton species, wax esters are the domin...

Full description

Saved in:
Bibliographic Details
Published in:Marine ecology. Progress series (Halstenbek) 2006-01, Vol.307, p.273-306
Main Authors: Lee, Richard F., Hagen, Wilhelm, Kattner, Gerhard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zooplankton storage lipids play an important role during reproduction, food scarcity, ontogeny and diapause, as shown by studies in various oceanic regions. While triacylglycerols, the primary storage lipid of terrestrial animals, are found in almost all zooplankton species, wax esters are the dominant storage lipid in many deep-living and polar zooplankton taxa. Phospholipids and diacylglycerol ethers are the unique storage lipids used by polar euphausiids and pteropods, respectively. In zooplankton with large stores of wax esters, triacylglycerols are more rapidly turned over and used for short-term energy needs, while wax esters serve as long-term energy deposits. Zooplankton groups found in polar, westerlies, upwelling and coastal biomes are characterized by accumulation of large lipid stores. In contrast, zooplankton from the trades/tropical biomes is mainly composed of omnivorous species with only small lipid reserves. Diapausing copepods, which enter deep water after feeding on phytoplankton during spring/summer blooms or at the end of upwelling periods, are characterized by large oil sacs filled with wax esters. The thermal expansion and compressibility of wax esters may allow diapausing copepods and other deep-water zooplankton to be neutrally buoyant in cold deep waters, and they can thus avoid spending energy to remain at these depths. Lipid droplets are often noted in zooplankton ovaries, and a portion of these droplets can be transferred to developing oocytes. In addition to lipid droplets, zooplankton eggs have yolks with lipovitellin, a lipoprotein with approximately equal amounts of protein and lipid. The lipovitellin lipid is predominantly phosphatidylcholine, so during reproduction females must convert a portion of their storage lipid into this phospholipid. Developing embryos use their lipovitellin and lipid droplets for energy and materials until feeding begins. The various functions storage lipids serve during the different life history stages of zooplankton are very complex and still not fully understood and hence offer a multitude of fascinating research perspectives.
ISSN:0171-8630
1616-1599
DOI:10.3354/meps307273