Loading…
Path Integral Approach to Quantum Thermodynamics
Work belongs to the most basic notions in thermodynamics but it is not well understood in quantum systems, especially in open quantum systems. By introducing a novel concept of the work functional along an individual Feynman path, we invent a new approach to study thermodynamics in the quantum regim...
Saved in:
Published in: | Physical review letters 2018-07, Vol.121 (4), p.040602-040602, Article 040602 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Work belongs to the most basic notions in thermodynamics but it is not well understood in quantum systems, especially in open quantum systems. By introducing a novel concept of the work functional along an individual Feynman path, we invent a new approach to study thermodynamics in the quantum regime. Using the work functional, we derive a path integral expression for the work statistics. By performing the ℏ expansion, we analytically prove the quantum-classical correspondence of the work statistics. In addition, we obtain the quantum correction to the classical fluctuating work. We can also apply this approach to an open quantum system in the strong coupling regime described by the quantum Brownian motion model. This approach provides an effective way to calculate the work in open quantum systems by utilizing various path integral techniques. As an example, we calculate the work statistics for a dragged harmonic oscillator in both isolated and open quantum systems. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.121.040602 |