Loading…
Organic and solution-processed tandem solar cells with 17.3% efficiency
Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient li...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2018-09, Vol.361 (6407), p.1094-1098 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63 |
container_end_page | 1098 |
container_issue | 6407 |
container_start_page | 1094 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 361 |
creator | Meng, Lingxian Zhang, Yamin Wan, Xiangjian Li, Chenxi Zhang, Xin Wang, Yanbo Ke, Xin Xiao, Zuo Ding, Liming Xia, Ruoxi Yip, Hin-Lap Cao, Yong Chen, Yongsheng |
description | Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved. |
doi_str_mv | 10.1126/science.aat2612 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087590801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087590801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK2evUlABC9pZzPJbnqUolUo9KLnZbM7qyn5qNkE6X9vYqMHTzPM-83j8Ri75jDnPBILb3KqDM21biPBoxM25bBMwmUEeMqmACjCFGQyYRfe7wB6bYnnbIL9hgJwytbb5l1XuQl0ZQNfF12b11W4b2pD3pMN2v5O5aDoJjBUFD74ytuPgMs53gXkXP6T4HDJzpwuPF2Nc8benh5fV8_hZrt-WT1sQhMDtqGzJDmAiC1aMGkkKJPGYCwTYaV0whAhOS11LFDHCXEJ2qJ2mGQZkBY4Y_dH3z7iZ0e-VWXuh1y6orrzKoJUJktIgffo7T90V3dN1adTEQeUgks5UIsjZZra-4ac2jd5qZuD4qCGjtXYsRo77j9uRt8uK8n-8b-l4jfgnXj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103761771</pqid></control><display><type>article</type><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals</source><source>Alma/SFX Local Collection</source><creator>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</creator><creatorcontrib>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</creatorcontrib><description>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aat2612</identifier><identifier>PMID: 30093603</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Charge materials ; Efficiency ; Electromagnetic absorption ; Electronics industry ; Empirical analysis ; Energy conversion efficiency ; Organic materials ; Organic semiconductors ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Thickness</subject><ispartof>Science (American Association for the Advancement of Science), 2018-09, Vol.361 (6407), p.1094-1098</ispartof><rights>Copyright © 2018, American Association for the Advancement of Science.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</citedby><cites>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</cites><orcidid>0000-0003-1448-8177 ; 0000-0002-4611-0286 ; 0000-0002-5750-9751 ; 0000-0001-6437-9150 ; 0000-0003-3705-7716 ; 0000-0003-2464-6247 ; 0000-0001-5266-8510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30093603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Ke, Xin</creatorcontrib><creatorcontrib>Xiao, Zuo</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</description><subject>Charge materials</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Electronics industry</subject><subject>Empirical analysis</subject><subject>Energy conversion efficiency</subject><subject>Organic materials</subject><subject>Organic semiconductors</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Thickness</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxRdRbK2evUlABC9pZzPJbnqUolUo9KLnZbM7qyn5qNkE6X9vYqMHTzPM-83j8Ri75jDnPBILb3KqDM21biPBoxM25bBMwmUEeMqmACjCFGQyYRfe7wB6bYnnbIL9hgJwytbb5l1XuQl0ZQNfF12b11W4b2pD3pMN2v5O5aDoJjBUFD74ytuPgMs53gXkXP6T4HDJzpwuPF2Nc8benh5fV8_hZrt-WT1sQhMDtqGzJDmAiC1aMGkkKJPGYCwTYaV0whAhOS11LFDHCXEJ2qJ2mGQZkBY4Y_dH3z7iZ0e-VWXuh1y6orrzKoJUJktIgffo7T90V3dN1adTEQeUgks5UIsjZZra-4ac2jd5qZuD4qCGjtXYsRo77j9uRt8uK8n-8b-l4jfgnXj5</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Meng, Lingxian</creator><creator>Zhang, Yamin</creator><creator>Wan, Xiangjian</creator><creator>Li, Chenxi</creator><creator>Zhang, Xin</creator><creator>Wang, Yanbo</creator><creator>Ke, Xin</creator><creator>Xiao, Zuo</creator><creator>Ding, Liming</creator><creator>Xia, Ruoxi</creator><creator>Yip, Hin-Lap</creator><creator>Cao, Yong</creator><creator>Chen, Yongsheng</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1448-8177</orcidid><orcidid>https://orcid.org/0000-0002-4611-0286</orcidid><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0003-3705-7716</orcidid><orcidid>https://orcid.org/0000-0003-2464-6247</orcidid><orcidid>https://orcid.org/0000-0001-5266-8510</orcidid></search><sort><creationdate>20180914</creationdate><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><author>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge materials</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Electronics industry</topic><topic>Empirical analysis</topic><topic>Energy conversion efficiency</topic><topic>Organic materials</topic><topic>Organic semiconductors</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Ke, Xin</creatorcontrib><creatorcontrib>Xiao, Zuo</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lingxian</au><au>Zhang, Yamin</au><au>Wan, Xiangjian</au><au>Li, Chenxi</au><au>Zhang, Xin</au><au>Wang, Yanbo</au><au>Ke, Xin</au><au>Xiao, Zuo</au><au>Ding, Liming</au><au>Xia, Ruoxi</au><au>Yip, Hin-Lap</au><au>Cao, Yong</au><au>Chen, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic and solution-processed tandem solar cells with 17.3% efficiency</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-09-14</date><risdate>2018</risdate><volume>361</volume><issue>6407</issue><spage>1094</spage><epage>1098</epage><pages>1094-1098</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30093603</pmid><doi>10.1126/science.aat2612</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1448-8177</orcidid><orcidid>https://orcid.org/0000-0002-4611-0286</orcidid><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0003-3705-7716</orcidid><orcidid>https://orcid.org/0000-0003-2464-6247</orcidid><orcidid>https://orcid.org/0000-0001-5266-8510</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2018-09, Vol.361 (6407), p.1094-1098 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2087590801 |
source | American Association for the Advancement of Science; JSTOR Archival Journals; Alma/SFX Local Collection |
subjects | Charge materials Efficiency Electromagnetic absorption Electronics industry Empirical analysis Energy conversion efficiency Organic materials Organic semiconductors Photovoltaic cells Photovoltaics Solar cells Thickness |
title | Organic and solution-processed tandem solar cells with 17.3% efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20and%20solution-processed%20tandem%20solar%20cells%20with%2017.3%25%20efficiency&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Meng,%20Lingxian&rft.date=2018-09-14&rft.volume=361&rft.issue=6407&rft.spage=1094&rft.epage=1098&rft.pages=1094-1098&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aat2612&rft_dat=%3Cproquest_cross%3E2087590801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2103761771&rft_id=info:pmid/30093603&rfr_iscdi=true |