Loading…

Organic and solution-processed tandem solar cells with 17.3% efficiency

Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient li...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2018-09, Vol.361 (6407), p.1094-1098
Main Authors: Meng, Lingxian, Zhang, Yamin, Wan, Xiangjian, Li, Chenxi, Zhang, Xin, Wang, Yanbo, Ke, Xin, Xiao, Zuo, Ding, Liming, Xia, Ruoxi, Yip, Hin-Lap, Cao, Yong, Chen, Yongsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63
cites cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63
container_end_page 1098
container_issue 6407
container_start_page 1094
container_title Science (American Association for the Advancement of Science)
container_volume 361
creator Meng, Lingxian
Zhang, Yamin
Wan, Xiangjian
Li, Chenxi
Zhang, Xin
Wang, Yanbo
Ke, Xin
Xiao, Zuo
Ding, Liming
Xia, Ruoxi
Yip, Hin-Lap
Cao, Yong
Chen, Yongsheng
description Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.
doi_str_mv 10.1126/science.aat2612
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2087590801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087590801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRbK2evUlABC9pZzPJbnqUolUo9KLnZbM7qyn5qNkE6X9vYqMHTzPM-83j8Ri75jDnPBILb3KqDM21biPBoxM25bBMwmUEeMqmACjCFGQyYRfe7wB6bYnnbIL9hgJwytbb5l1XuQl0ZQNfF12b11W4b2pD3pMN2v5O5aDoJjBUFD74ytuPgMs53gXkXP6T4HDJzpwuPF2Nc8benh5fV8_hZrt-WT1sQhMDtqGzJDmAiC1aMGkkKJPGYCwTYaV0whAhOS11LFDHCXEJ2qJ2mGQZkBY4Y_dH3z7iZ0e-VWXuh1y6orrzKoJUJktIgffo7T90V3dN1adTEQeUgks5UIsjZZra-4ac2jd5qZuD4qCGjtXYsRo77j9uRt8uK8n-8b-l4jfgnXj5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103761771</pqid></control><display><type>article</type><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals</source><source>Alma/SFX Local Collection</source><creator>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</creator><creatorcontrib>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</creatorcontrib><description>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aat2612</identifier><identifier>PMID: 30093603</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Charge materials ; Efficiency ; Electromagnetic absorption ; Electronics industry ; Empirical analysis ; Energy conversion efficiency ; Organic materials ; Organic semiconductors ; Photovoltaic cells ; Photovoltaics ; Solar cells ; Thickness</subject><ispartof>Science (American Association for the Advancement of Science), 2018-09, Vol.361 (6407), p.1094-1098</ispartof><rights>Copyright © 2018, American Association for the Advancement of Science.</rights><rights>Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</citedby><cites>FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</cites><orcidid>0000-0003-1448-8177 ; 0000-0002-4611-0286 ; 0000-0002-5750-9751 ; 0000-0001-6437-9150 ; 0000-0003-3705-7716 ; 0000-0003-2464-6247 ; 0000-0001-5266-8510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2870,2871,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30093603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Ke, Xin</creatorcontrib><creatorcontrib>Xiao, Zuo</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</description><subject>Charge materials</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Electronics industry</subject><subject>Empirical analysis</subject><subject>Energy conversion efficiency</subject><subject>Organic materials</subject><subject>Organic semiconductors</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar cells</subject><subject>Thickness</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AQxRdRbK2evUlABC9pZzPJbnqUolUo9KLnZbM7qyn5qNkE6X9vYqMHTzPM-83j8Ri75jDnPBILb3KqDM21biPBoxM25bBMwmUEeMqmACjCFGQyYRfe7wB6bYnnbIL9hgJwytbb5l1XuQl0ZQNfF12b11W4b2pD3pMN2v5O5aDoJjBUFD74ytuPgMs53gXkXP6T4HDJzpwuPF2Nc8benh5fV8_hZrt-WT1sQhMDtqGzJDmAiC1aMGkkKJPGYCwTYaV0whAhOS11LFDHCXEJ2qJ2mGQZkBY4Y_dH3z7iZ0e-VWXuh1y6orrzKoJUJktIgffo7T90V3dN1adTEQeUgks5UIsjZZra-4ac2jd5qZuD4qCGjtXYsRo77j9uRt8uK8n-8b-l4jfgnXj5</recordid><startdate>20180914</startdate><enddate>20180914</enddate><creator>Meng, Lingxian</creator><creator>Zhang, Yamin</creator><creator>Wan, Xiangjian</creator><creator>Li, Chenxi</creator><creator>Zhang, Xin</creator><creator>Wang, Yanbo</creator><creator>Ke, Xin</creator><creator>Xiao, Zuo</creator><creator>Ding, Liming</creator><creator>Xia, Ruoxi</creator><creator>Yip, Hin-Lap</creator><creator>Cao, Yong</creator><creator>Chen, Yongsheng</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1448-8177</orcidid><orcidid>https://orcid.org/0000-0002-4611-0286</orcidid><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0003-3705-7716</orcidid><orcidid>https://orcid.org/0000-0003-2464-6247</orcidid><orcidid>https://orcid.org/0000-0001-5266-8510</orcidid></search><sort><creationdate>20180914</creationdate><title>Organic and solution-processed tandem solar cells with 17.3% efficiency</title><author>Meng, Lingxian ; Zhang, Yamin ; Wan, Xiangjian ; Li, Chenxi ; Zhang, Xin ; Wang, Yanbo ; Ke, Xin ; Xiao, Zuo ; Ding, Liming ; Xia, Ruoxi ; Yip, Hin-Lap ; Cao, Yong ; Chen, Yongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge materials</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Electronics industry</topic><topic>Empirical analysis</topic><topic>Energy conversion efficiency</topic><topic>Organic materials</topic><topic>Organic semiconductors</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar cells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lingxian</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wan, Xiangjian</creatorcontrib><creatorcontrib>Li, Chenxi</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wang, Yanbo</creatorcontrib><creatorcontrib>Ke, Xin</creatorcontrib><creatorcontrib>Xiao, Zuo</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Xia, Ruoxi</creatorcontrib><creatorcontrib>Yip, Hin-Lap</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><creatorcontrib>Chen, Yongsheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lingxian</au><au>Zhang, Yamin</au><au>Wan, Xiangjian</au><au>Li, Chenxi</au><au>Zhang, Xin</au><au>Wang, Yanbo</au><au>Ke, Xin</au><au>Xiao, Zuo</au><au>Ding, Liming</au><au>Xia, Ruoxi</au><au>Yip, Hin-Lap</au><au>Cao, Yong</au><au>Chen, Yongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic and solution-processed tandem solar cells with 17.3% efficiency</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2018-09-14</date><risdate>2018</risdate><volume>361</volume><issue>6407</issue><spage>1094</spage><epage>1098</epage><pages>1094-1098</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Though organic photovoltaic cells (OPVs) have many advantages, their performance still lags far behind that of other photovoltaic platforms. One of the most fundamental reasons for this is the low charge mobility of organic materials, leading to a limit on the active layer thickness and efficient light absorption. In this work, guided by a semi-empirical model analysis and using the tandem cell strategy to overcome such issues, and taking advantage of the high diversity and easily tunable band structure of organic materials, a record and certified 17.29% power conversion efficiency for a 2-terminal monolithic solution processed tandem OPV is achieved.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>30093603</pmid><doi>10.1126/science.aat2612</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1448-8177</orcidid><orcidid>https://orcid.org/0000-0002-4611-0286</orcidid><orcidid>https://orcid.org/0000-0002-5750-9751</orcidid><orcidid>https://orcid.org/0000-0001-6437-9150</orcidid><orcidid>https://orcid.org/0000-0003-3705-7716</orcidid><orcidid>https://orcid.org/0000-0003-2464-6247</orcidid><orcidid>https://orcid.org/0000-0001-5266-8510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2018-09, Vol.361 (6407), p.1094-1098
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_2087590801
source American Association for the Advancement of Science; JSTOR Archival Journals; Alma/SFX Local Collection
subjects Charge materials
Efficiency
Electromagnetic absorption
Electronics industry
Empirical analysis
Energy conversion efficiency
Organic materials
Organic semiconductors
Photovoltaic cells
Photovoltaics
Solar cells
Thickness
title Organic and solution-processed tandem solar cells with 17.3% efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20and%20solution-processed%20tandem%20solar%20cells%20with%2017.3%25%20efficiency&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Meng,%20Lingxian&rft.date=2018-09-14&rft.volume=361&rft.issue=6407&rft.spage=1094&rft.epage=1098&rft.pages=1094-1098&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aat2612&rft_dat=%3Cproquest_cross%3E2087590801%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-fde710064d3d0c826eb7cc34756d77f6cee3efa7a463a45e170ad3af35bb0ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2103761771&rft_id=info:pmid/30093603&rfr_iscdi=true