Loading…

Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress

Drought is a major concern for sustainable yield under changing environment. Soybean, an economically important oil and protein crop, is prone to drought resulting in yield instability. Salicylic acid (SA), a multifaceted growth hormone, modulates a series of parallel processes to confer drought tol...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology and biochemistry 2018-09, Vol.130, p.529-541
Main Authors: Sharma, Marisha, Gupta, Sunil K., Majumder, Baisakhi, Maurya, Vivek K., Deeba, Farah, Alam, Afroz, Pandey, Vivek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought is a major concern for sustainable yield under changing environment. Soybean, an economically important oil and protein crop, is prone to drought resulting in yield instability. Salicylic acid (SA), a multifaceted growth hormone, modulates a series of parallel processes to confer drought tolerance thereby relieving yield limitations. The present study was performed in soybean plants treated with SA (0.5 mM) through seed pretreatment under drought regimes: severe stress (50% RWC) and moderate stress (75% RWC), and rehydration. Differential leaf proteome profiling with morphological, physiological and antioxidative metabolism studies were performed at two developmental stages (vegetative and flowering). This explained the tolerance attribution to soybean throughout the development attaining yield stability. Abundance of proteins involved in photosynthesis and ATP synthesis generated energy driving metabolic processes towards plant growth, development and stress acclimation. Carbon (C) metabolism proteins involved in growth, osmoregulation and C partition relieved drought-induced C impairment under SA. Defensive mechanisms against redox imbalance and protein misfolding and degradation under stress were enhanced as depicted by the abundance of proteins involved in redox balance and protein synthesis, assembly and degradation at vegetative stage. Redox signaling in chloroplast and its interplay with SA signaling triggered different defense responses as shown through thioredoxin protein abundance. Amino acid metabolism proteins abundance resulted in increased osmoprotectants accumulation like proline at initial stage which contributed later towards N (nitrogen) remobilization to developing sink. At later stage, abundance of these proteins maintained redox homeostasis and N remobilization for improved sink strength. The redox homeostasis was supported by the increased antioxidative metabolism in SA treated plants. The downregulation of proteins at flowering also contributed towards N remobilization. Yield potential was improved by SA under drought through acclimation with enhanced N and C remobilization to sink as demonstrated by increased yield parameters like seed number and weight per plant, thousand seed weight and harvest index. The potential of SA in conferring drought tolerance to plants to maintain sustainable yield possess future research interests. •SA improved physiological performance of drought stressed soybean driving different metabolic pro
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2018.08.001