Loading…
Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds
Food industry produces a large amount of onion wastes. Due to the high amount of bioactive compounds in onion by-products an idea for their reuse, could be use them as source of high-value functional and health ingredients. In this study, outer dry layers of coppery onion “Ramata di Montoro” were us...
Saved in:
Published in: | Food chemistry 2018-12, Vol.269, p.495-502 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Food industry produces a large amount of onion wastes. Due to the high amount of bioactive compounds in onion by-products an idea for their reuse, could be use them as source of high-value functional and health ingredients. In this study, outer dry layers of coppery onion “Ramata di Montoro” were used as source of bioactive compounds. Firstly, the chemical profile of secondary metabolites of exhaustive extract, obtained by ultrasound assisted extraction was established by UHPLC-UV-HRMS/MS analysis. Subsequently, the supercritical fluid extraction was used as alternative and green method to recover flavonoids from onion skin. Main parameters such as pressure, temperature and composition of solvent modifier were optimized in order to improve the extraction efficiency of SFE technique, by using a response surface Box–Behnken design. |
---|---|
ISSN: | 0308-8146 1873-7072 |
DOI: | 10.1016/j.foodchem.2018.07.042 |