Loading…

Full characterization of spatial coregistration errors and spatial resolution in spectral imagers

For multi- and hyperspectral imagers, the integrity of the spectral information depends critically on the spatial coregistration between bands. There is at present no commonly accepted way to fully specify coregistration performance. This Letter shows how a relatively simple measurement technique ca...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2018-08, Vol.43 (16), p.3814-3817
Main Authors: Torkildsen, Hans Erling, Skauli, Torbjørn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For multi- and hyperspectral imagers, the integrity of the spectral information depends critically on the spatial coregistration between bands. There is at present no commonly accepted way to fully specify coregistration performance. This Letter shows how a relatively simple measurement technique can be used to form sharp images of the point spread function (PSF) in all bands, yielding information about spatial coregistration, as well as spatial resolution. A previously proposed metric is applied to characterize coregistration in terms of PSF similarity between bands. Resolution is characterized by ensquared energy. Two commercial hyperspectral cameras with nominally similar specifications are compared, and turn out to have large differences in their actual performance. The results, and the relative simplicity of the measurement, suggest that the method is suitable as a standardized performance test.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.43.003814