Loading…

Influence of custom‐made and stock mouthguard thickness on biomechanical response to a simulated impact

Background/Aims Mouthguards (MGs) are devices that can reduce the risks of facial trauma. However, the large variety of MG types and thicknesses raises the question of which type is the most effective and beneficial for the athletes. The aim of this study was to evaluate stress distribution in the s...

Full description

Saved in:
Bibliographic Details
Published in:Dental traumatology 2018-12, Vol.34 (6), p.429-437
Main Authors: Tribst, João Paulo Mendes, Oliveira Dal Piva, Amanda Maria, Borges, Alexandre Luiz Souto, Bottino, Marco Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background/Aims Mouthguards (MGs) are devices that can reduce the risks of facial trauma. However, the large variety of MG types and thicknesses raises the question of which type is the most effective and beneficial for the athletes. The aim of this study was to evaluate stress distribution in the skull, teeth, and jaws as a consequence of a direct impact. Material and Methods Using modeling software, a human skull was modeled and a human jaw was created with all teeth inserted into the respective alveolus. The models were divided according to the MG type (custom‐made or stock) and thickness (1, 2, and 4 mm). Two models without MG were evaluated with and without teeth contact. The geometries were exported to analysis software and the materials were considered ideal. Fixation occurred at the base of the foramen magnum. The load (500 N) was applied on the canine tooth with a ball. Maximum principal (MPa) and Von‐Mises results were obtained. Results Without any protection, the generated tensile stress was of greater magnitude causing more damage in the absence of teeth contact. The presence of a MG significantly reduced the generated stress in all structures, and the customized/individualized type was more efficient than stock MGs. Conclusions In extreme situations when it is impossible to use a MG, keeping the teeth in maximum intercuspal position is less harmful. Despite this, the use of any MG is beneficial and assists in dampening the generated stress. The thicker the device, the greater the capacity for decreasing the damage in all structures. The use of individual protectors for each patient is even more beneficial for preventing trauma during at‐risk activities of impact.
ISSN:1600-4469
1600-9657
DOI:10.1111/edt.12432