Loading…
Insights into different dependence of dNTP triphosphohydrolase on metal ion species from intracellular ion concentrations in Thermus thermophilus
Deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) from Thermus thermophilus HB8 (TTHB8) hydrolyzes wide variety of dNTPs to deoxyribonucleoside and inorganic triphosphate in magnesium-dependent manner. In this paper, we assess the specificity for various metal ions and of the dNT...
Saved in:
Published in: | Extremophiles : life under extreme conditions 2008-03, Vol.12 (2), p.217-223 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) from Thermus thermophilus HB8 (TTHB8) hydrolyzes wide variety of dNTPs to deoxyribonucleoside and inorganic triphosphate in magnesium-dependent manner. In this paper, we assess the specificity for various metal ions and of the dNTP triphosphohydrolase activity of the dNTPase from TTHB8. Manganese and cobalt ions more effectively induced the activity for dNTPs than magnesium and, unexpectedly, brought about the degradation of single kind of dNTP. Manganese and cobalt concentrations of 10 nM were enough to induce the activity, while magnesium of about 1 mM was required for the induction of the activity. To further evaluate metal ions inherent to dNTPase in TTHB8 cells, we measured intracellular concentrations of major metal ions in TTHB8 cells by inductively coupled plasma emission spectroscopy and compared them with the dependence of metal ion concentration on dNTPase activity. Though cobalt ion was below detectable level, magnesium and manganese ions were detected at sufficient level to induce dNTPase activity. These results suggest that both manganese and magnesium ions are likely to be functional under intracellular condition. In addition, the proposed model of dNTPase activity induced by magnesium and multiple dNTPs was discussed based on the results obtained in this study. |
---|---|
ISSN: | 1431-0651 1433-4909 |
DOI: | 10.1007/s00792-007-0118-6 |