Loading…

Ingested Micronizing Plastic Particle Compositions and Size Distributions within Stranded Post-Hatchling Sea Turtles

From July 2015 to November 2016, 96 post-hatchling sea turtles were collected from 118 km of the Atlantic coastline in Florida, USA, including loggerhead, green, and hawksbill sea turtle species. Forty-five of the recovered turtles were rehabilitated and released, but the remaining 52 died and were...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2018-09, Vol.52 (18), p.10307-10316
Main Authors: White, Evan M, Clark, Samantha, Manire, Charles A, Crawford, Benjamin, Wang, Shunli, Locklin, Jason, Ritchie, Branson W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:From July 2015 to November 2016, 96 post-hatchling sea turtles were collected from 118 km of the Atlantic coastline in Florida, USA, including loggerhead, green, and hawksbill sea turtle species. Forty-five of the recovered turtles were rehabilitated and released, but the remaining 52 died and were frozen. At necropsy, the gastrointestinal tracts of most the turtles contained visible plastic, and collected particles of 27 individuals were chemically characterized by Raman microscopy as polyethylene, polypropylene, polyethylene terephthalate, and polystyrene. Mesoparticle plastic fragments 1.0–8.7 mm, microparticle fragments 20–1000 μm, and nanoparticles 5–169 nm were identified in the turtles. Polyethylene and polypropylene were the most common plastics ingested from specimens representing 54.1 and 23.7% of the total observed mesoparticles and 11.7 and 21.0% of the total observed microparticles, respectively. A plastic-to-body mass ratio of 2.07 mg/g was determined for this group. The authors suggest that ingestion of micronizing plastic by post-hatchling sea turtles is likely a substantial risk to survival of these endangered and threatened species. This study also provides some of the first evidence for the formation of nanoscopic plastic particles that we theorize forms in the post-hatchling and juvenile environment and are present post-ingestion.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.8b02776