Loading…

An Assessment of the Biases of Satellite Rainfall Estimates over the Tibetan Plateau and Correction Methods Based on Topographic Analysis

The hydrological processes over the Tibetan Plateau have significant implications on regional macroscale atmospheric circulation patterns and the Asian monsoon system. Because of its remote setting and lack of ground observations, it is difficult to study the spatial and temporal patterns of precipi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrometeorology 2008-06, Vol.9 (3), p.301-326
Main Authors: Yin, Zhi-Yong, Zhang, Xueqin, Liu, Xiaodong, Colella, Mike, Chen, Xiaoling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hydrological processes over the Tibetan Plateau have significant implications on regional macroscale atmospheric circulation patterns and the Asian monsoon system. Because of its remote setting and lack of ground observations, it is difficult to study the spatial and temporal patterns of precipitation over the plateau, and satellite remote sensing technology can be used to fill in the gaps where station data are not available. In this study the authors examine monthly 1° × 1° rainfall estimates obtained from the Special Sensor Microwave Imager (SSM/I) [National Environmental Satellite, Data, and Information Service (NESDIS) algorithm] and Tropical Rainfall Measuring Mission (TRMM) 3B42 version 5 (V5) products for the months of April–October 1998–2002 over the Tibetan Plateau. By comparing the satellite estimates with ground observations at 94 weather stations in the study region, the authors derived regression models that produced significant improvements to satellite estimates based on various levels of correction efforts, using geographic location and topographic variables extracted from digital elevation models using geographic information systems (GIS) technology. The explained variance in observed precipitation was improved from 34% to 38% by SSM/I and TRMM 3B42 V5 products alone to over 70% when location and topographic variables were added. These topographic variables reflect micro- to mesoscale surface roughness, height of topographic features or relief, slopes facing toward or away from the moisture pathways, and relative locations or directions to prominent topographic features such as mountain peaks and ridgelines.
ISSN:1525-755X
1525-7541
DOI:10.1175/2007JHM903.1