Loading…
Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production
Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures o...
Saved in:
Published in: | Remote sensing of environment 2008-09, Vol.112 (9), p.3538-3549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is known to degrade in areas of very low vegetation or in areas of dense forest. Two of the new vegetation products from the MODIS sensor, derived by integrating spectral reflectance, climate data, and land cover, are thought to better approximate primary productivity than NDVI. In this study, we determine if the new MODIS derived measures of primary production, gross primary productivity (GPP) and net primary productivity (NPP) better explain variation in bird richness than historically used NDVI. Moreover, we evaluate if the two productivity measures covary more strongly with bird diversity in those vegetation conditions where limitations of NDVI are well recognized.
Biodiversity was represented as native landbird species richness derived from the North American Breeding Bird Survey. Analyses included correlation analyses among predictor variables, and univariate regression analyses between each predictor variable and bird species richness. Analyses were done at two levels: for all BBS routes across natural landscapes in North America; and for routes in 10 vegetation classes stratified by vegetated cover along a gradient from bare ground to herbaceous cover to tree cover. We found that NDVI, GPP and NPP were highly correlated and explained similar variation in bird species richness when analyzed for all samples across North America. However, when samples were stratified by vegetated cover, strength of correlation between NDVI and both productivity measures was low for samples with bare ground and for dense forest. The NDVI also explained substantially less variation in bird species richness than the primary production in areas with more bare ground and in areas of dense forest. We conclude that MODIS productivity measures have higher utility in studies of the relationship of species richness and productivity and that MODIS GPP and NPP improve on NDVI, especially for studies with large variation in vegetated cover and density. |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2008.04.012 |