Loading…

Augmentation of cytochrome P450 monooxygenase catalysis on its interaction with NADPH-cytochrome P450 reductase FMN domain from Trichoderma brevicompactum

Cytochrome P450s are involved in a variety of monooxygenation reactions that require electron transfer from one redox partner to the other. We have recently shown the catalytic mechanism of a cytochrome P450 monooxygenase like protein (encoded by tri11 gene) that catalyzes the hydroxylation of 12,13...

Full description

Saved in:
Bibliographic Details
Published in:The international journal of biochemistry & cell biology 2018-10, Vol.103, p.74-80
Main Authors: Hussain, Razak, Ahmed, Mushtaq, Khan, Tabreiz Ahmad, Akhter, Yusuf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cytochrome P450s are involved in a variety of monooxygenation reactions that require electron transfer from one redox partner to the other. We have recently shown the catalytic mechanism of a cytochrome P450 monooxygenase like protein (encoded by tri11 gene) that catalyzes the hydroxylation of 12,13-epoxytrichothec-9-ene (EPT) to produce trichodermol in the trichothecene biosynthetic pathway of trichodermin and harzianum A in Trichoderma brevicompactum [J Biol Inorg Chem. 22(8):1197-1209. doi: https://doi.org/10.1007/s00775-017-1496-6]. In the present work we have analyzed the effects of interaction of CPR FMN domain, a redox partner of tri11 protein, on its catalysis. The analysis of protein-protein complex interface showed various important contacts between the two protein partners that may aid in the process of electron transfer. The redox partner binding with tri11 protein on proximal side elicited catalytically important changes on the oppositely situated distal side that may help in stabilizing the active site and may play positive roles during the catalysis.
ISSN:1357-2725
1878-5875
DOI:10.1016/j.biocel.2018.08.007