Loading…

High-Quality Bayesian Pansharpening

Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is ma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2019-01, Vol.28 (1), p.227-239
Main Authors: Wang, Tingting, Fang, Faming, Li, Fang, Zhang, Guixu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383
cites cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383
container_end_page 239
container_issue 1
container_start_page 227
container_title IEEE transactions on image processing
container_volume 28
creator Wang, Tingting
Fang, Faming
Li, Fang
Zhang, Guixu
description Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.
doi_str_mv 10.1109/TIP.2018.2866954
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2092520039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8444767</ieee_id><sourcerecordid>2117175166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUEKvXhJndnP7FGL2kLBCvW8bJJNm5ImNZsc-u_d0tqDpxmYZ4Z5H0LuEcaIoJ-Xs8WYAsZjGkupBb8gfdQcIwBOL0MPQkUKue6RG-83AMgFymvSY4BMas77ZDQtVuvoq7Nl0e6Hr3bvfGGr4cJWfm2bnauKanVLrnJbend3qgPy_f62nEyj-efHbPIyj1LGVRtZy1yutLWZVMhAMpo6JZXOYp5otKCUg9wplspcpVIIqSUKKZI8ixPJWcwG5Ol4d9fUP53zrdkWPnVlaStXd95Q0FRQAKYDOvqHbuquqcJ3hiIqVCGnDBQcqbSpvW9cbnZNsbXN3iCYg0ATBJqDQHMSGFYeT4e7ZOuy88KfsQA8HIHCOXcex5zzkJX9Aqc5cSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175166</pqid></control><display><type>article</type><title>High-Quality Bayesian Pansharpening</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</creator><creatorcontrib>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</creatorcontrib><description>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2866954</identifier><identifier>PMID: 30136944</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; alternating direction method of multipliers ; Bayes methods ; Bayesian analysis ; Bayesian theory ; Computer vision ; Conditional probability ; Image acquisition ; Image fusion ; Image processing ; Image resolution ; multi-spectral image ; Multiresolution analysis ; optimization model ; panchromatic image ; Pansharpening ; Spatial data ; Spatial resolution ; Spectra ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2019-01, Vol.28 (1), p.227-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</citedby><cites>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</cites><orcidid>0000-0003-4511-4813 ; 0000-0003-4720-6607 ; 0000-0001-6804-2651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8444767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30136944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><title>High-Quality Bayesian Pansharpening</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</description><subject>Algorithms</subject><subject>alternating direction method of multipliers</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Computer vision</subject><subject>Conditional probability</subject><subject>Image acquisition</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>multi-spectral image</subject><subject>Multiresolution analysis</subject><subject>optimization model</subject><subject>panchromatic image</subject><subject>Pansharpening</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3eBUEKvXhJndnP7FGL2kLBCvW8bJJNm5ImNZsc-u_d0tqDpxmYZ4Z5H0LuEcaIoJ-Xs8WYAsZjGkupBb8gfdQcIwBOL0MPQkUKue6RG-83AMgFymvSY4BMas77ZDQtVuvoq7Nl0e6Hr3bvfGGr4cJWfm2bnauKanVLrnJbend3qgPy_f62nEyj-efHbPIyj1LGVRtZy1yutLWZVMhAMpo6JZXOYp5otKCUg9wplspcpVIIqSUKKZI8ixPJWcwG5Ol4d9fUP53zrdkWPnVlaStXd95Q0FRQAKYDOvqHbuquqcJ3hiIqVCGnDBQcqbSpvW9cbnZNsbXN3iCYg0ATBJqDQHMSGFYeT4e7ZOuy88KfsQA8HIHCOXcex5zzkJX9Aqc5cSw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Tingting</creator><creator>Fang, Faming</creator><creator>Li, Fang</creator><creator>Zhang, Guixu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid></search><sort><creationdate>20190101</creationdate><title>High-Quality Bayesian Pansharpening</title><author>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>alternating direction method of multipliers</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Computer vision</topic><topic>Conditional probability</topic><topic>Image acquisition</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>multi-spectral image</topic><topic>Multiresolution analysis</topic><topic>optimization model</topic><topic>panchromatic image</topic><topic>Pansharpening</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingting</au><au>Fang, Faming</au><au>Li, Fang</au><au>Zhang, Guixu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Quality Bayesian Pansharpening</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>227</spage><epage>239</epage><pages>227-239</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30136944</pmid><doi>10.1109/TIP.2018.2866954</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-01, Vol.28 (1), p.227-239
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2092520039
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
alternating direction method of multipliers
Bayes methods
Bayesian analysis
Bayesian theory
Computer vision
Conditional probability
Image acquisition
Image fusion
Image processing
Image resolution
multi-spectral image
Multiresolution analysis
optimization model
panchromatic image
Pansharpening
Spatial data
Spatial resolution
Spectra
Wavelet transforms
title High-Quality Bayesian Pansharpening
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Quality%20Bayesian%20Pansharpening&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Tingting&rft.date=2019-01-01&rft.volume=28&rft.issue=1&rft.spage=227&rft.epage=239&rft.pages=227-239&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2866954&rft_dat=%3Cproquest_pubme%3E2117175166%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117175166&rft_id=info:pmid/30136944&rft_ieee_id=8444767&rfr_iscdi=true