Loading…
High-Quality Bayesian Pansharpening
Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is ma...
Saved in:
Published in: | IEEE transactions on image processing 2019-01, Vol.28 (1), p.227-239 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383 |
container_end_page | 239 |
container_issue | 1 |
container_start_page | 227 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Wang, Tingting Fang, Faming Li, Fang Zhang, Guixu |
description | Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion. |
doi_str_mv | 10.1109/TIP.2018.2866954 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2092520039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8444767</ieee_id><sourcerecordid>2117175166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3eBUEKvXhJndnP7FGL2kLBCvW8bJJNm5ImNZsc-u_d0tqDpxmYZ4Z5H0LuEcaIoJ-Xs8WYAsZjGkupBb8gfdQcIwBOL0MPQkUKue6RG-83AMgFymvSY4BMas77ZDQtVuvoq7Nl0e6Hr3bvfGGr4cJWfm2bnauKanVLrnJbend3qgPy_f62nEyj-efHbPIyj1LGVRtZy1yutLWZVMhAMpo6JZXOYp5otKCUg9wplspcpVIIqSUKKZI8ixPJWcwG5Ol4d9fUP53zrdkWPnVlaStXd95Q0FRQAKYDOvqHbuquqcJ3hiIqVCGnDBQcqbSpvW9cbnZNsbXN3iCYg0ATBJqDQHMSGFYeT4e7ZOuy88KfsQA8HIHCOXcex5zzkJX9Aqc5cSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175166</pqid></control><display><type>article</type><title>High-Quality Bayesian Pansharpening</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</creator><creatorcontrib>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</creatorcontrib><description>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2866954</identifier><identifier>PMID: 30136944</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; alternating direction method of multipliers ; Bayes methods ; Bayesian analysis ; Bayesian theory ; Computer vision ; Conditional probability ; Image acquisition ; Image fusion ; Image processing ; Image resolution ; multi-spectral image ; Multiresolution analysis ; optimization model ; panchromatic image ; Pansharpening ; Spatial data ; Spatial resolution ; Spectra ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2019-01, Vol.28 (1), p.227-239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</citedby><cites>FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</cites><orcidid>0000-0003-4511-4813 ; 0000-0003-4720-6607 ; 0000-0001-6804-2651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8444767$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30136944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><title>High-Quality Bayesian Pansharpening</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</description><subject>Algorithms</subject><subject>alternating direction method of multipliers</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Computer vision</subject><subject>Conditional probability</subject><subject>Image acquisition</subject><subject>Image fusion</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>multi-spectral image</subject><subject>Multiresolution analysis</subject><subject>optimization model</subject><subject>panchromatic image</subject><subject>Pansharpening</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3eBUEKvXhJndnP7FGL2kLBCvW8bJJNm5ImNZsc-u_d0tqDpxmYZ4Z5H0LuEcaIoJ-Xs8WYAsZjGkupBb8gfdQcIwBOL0MPQkUKue6RG-83AMgFymvSY4BMas77ZDQtVuvoq7Nl0e6Hr3bvfGGr4cJWfm2bnauKanVLrnJbend3qgPy_f62nEyj-efHbPIyj1LGVRtZy1yutLWZVMhAMpo6JZXOYp5otKCUg9wplspcpVIIqSUKKZI8ixPJWcwG5Ol4d9fUP53zrdkWPnVlaStXd95Q0FRQAKYDOvqHbuquqcJ3hiIqVCGnDBQcqbSpvW9cbnZNsbXN3iCYg0ATBJqDQHMSGFYeT4e7ZOuy88KfsQA8HIHCOXcex5zzkJX9Aqc5cSw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Tingting</creator><creator>Fang, Faming</creator><creator>Li, Fang</creator><creator>Zhang, Guixu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid></search><sort><creationdate>20190101</creationdate><title>High-Quality Bayesian Pansharpening</title><author>Wang, Tingting ; Fang, Faming ; Li, Fang ; Zhang, Guixu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>alternating direction method of multipliers</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Computer vision</topic><topic>Conditional probability</topic><topic>Image acquisition</topic><topic>Image fusion</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>multi-spectral image</topic><topic>Multiresolution analysis</topic><topic>optimization model</topic><topic>panchromatic image</topic><topic>Pansharpening</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Faming</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Zhang, Guixu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingting</au><au>Fang, Faming</au><au>Li, Fang</au><au>Zhang, Guixu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Quality Bayesian Pansharpening</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>227</spage><epage>239</epage><pages>227-239</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Pansharpening is a process of acquiring a multi-spectral image with high spatial resolution by fusing a low resolution multi-spectral image with a corresponding high resolution panchromatic image. In this paper, a new pansharpening method based on the Bayesian theory is proposed. The algorithm is mainly based on three assumptions: 1) the geometric information contained in the pan-sharpened image is coincident with that contained in the panchromatic image; 2) the pan-sharpened image and the original multi-spectral image should share the same spectral information; and 3) in each pan-sharpened image channel, the neighboring pixels not around the edges are similar. We build our posterior probability model according to above-mentioned assumptions and solve it by the alternating direction method of multipliers. The experiments at reduced and full resolution show that the proposed method outperforms the other state-of-the-art pansharpening methods. Besides, we verify that the new algorithm is effective in preserving spectral and spatial information with high reliability. Further experiments also show that the proposed method can be successfully extended to hyper-spectral image fusion.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30136944</pmid><doi>10.1109/TIP.2018.2866954</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4511-4813</orcidid><orcidid>https://orcid.org/0000-0003-4720-6607</orcidid><orcidid>https://orcid.org/0000-0001-6804-2651</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-01, Vol.28 (1), p.227-239 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2092520039 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms alternating direction method of multipliers Bayes methods Bayesian analysis Bayesian theory Computer vision Conditional probability Image acquisition Image fusion Image processing Image resolution multi-spectral image Multiresolution analysis optimization model panchromatic image Pansharpening Spatial data Spatial resolution Spectra Wavelet transforms |
title | High-Quality Bayesian Pansharpening |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Quality%20Bayesian%20Pansharpening&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Wang,%20Tingting&rft.date=2019-01-01&rft.volume=28&rft.issue=1&rft.spage=227&rft.epage=239&rft.pages=227-239&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2866954&rft_dat=%3Cproquest_pubme%3E2117175166%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-aa3ef79aad67130632ce7679d84b91a077e0fe73c6f7c6556961565bfd8b64383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2117175166&rft_id=info:pmid/30136944&rft_ieee_id=8444767&rfr_iscdi=true |