Loading…

Charge transport and intrinsic fluorescence in amyloid-like fibrils

The self-assembly of polypeptides into stable, conductive, and intrinsically fluorescent biomolecular nanowires is reported. We have studied the morphology and electrical conduction of fibrils made of an elastin-related polypeptide, poly(ValGlyGlyLeuGly). These amyloid-like nanofibrils, with a diame...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-11, Vol.104 (46), p.18019-18024
Main Authors: del Mercato, Loretta Laureana, Pompa, Pier Paolo, Maruccio, Giuseppe, Torre, Antonio Della, Sabella, Stefania, Tamburro, Antonio Mario, Cingolani, Roberto, Rinaldi, Ross
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The self-assembly of polypeptides into stable, conductive, and intrinsically fluorescent biomolecular nanowires is reported. We have studied the morphology and electrical conduction of fibrils made of an elastin-related polypeptide, poly(ValGlyGlyLeuGly). These amyloid-like nanofibrils, with a diameter ranging from 20 to 250 nm, result from self-assembly in aqueous solution at neutral pH. Their morphological properties and conductivity have been investigated by atomic force microscopy, scanning tunneling microscopy, and two-terminal transport experiments at the micro- and nanoscales. We demonstrate that the nanofibrils can sustain significant electrical conduction in the solid state at ambient conditions and have remarkable stability. We also show intrinsic blue-green fluorescence of the nanofibrils by confocal microscopy analyses. These results indicate that direct (label-free) excitation can be used to investigate the aggregation state or the polymorphism of amyloid-like fibrils (and possibly of other proteinaceous material) and open up interesting perspectives for the use of peptide-based nanowire structures, with tunable physical and chemical properties, for a wide range of nanobiotechnological and bioelectronic applications.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0702843104