Loading…

Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations

Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the f...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2018-10, Vol.178 (2), p.612-625
Main Authors: Chen, Jie, Wang, Jilin, Chen, Wei, Sun, Wenqiang, Peng, Meng, Yuan, Zhiyang, Shen, Shuangqian, Xie, Kun, Jin, Cheng, Sun, Yangyang, Liu, Xianqing, Fernie, Alisdair R., Yu, Sibin, Luo, Jie
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-b0acaa5aac415fe3be9dd7272fbe45458e31629dd160d23f5f5b8a6806dad3003
cites
container_end_page 625
container_issue 2
container_start_page 612
container_title Plant physiology (Bethesda)
container_volume 178
creator Chen, Jie
Wang, Jilin
Chen, Wei
Sun, Wenqiang
Peng, Meng
Yuan, Zhiyang
Shen, Shuangqian
Xie, Kun
Jin, Cheng
Sun, Yangyang
Liu, Xianqing
Fernie, Alisdair R.
Yu, Sibin
Luo, Jie
description Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.
doi_str_mv 10.1104/pp.18.00490
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2093309362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26537963</jstor_id><sourcerecordid>26537963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b0acaa5aac415fe3be9dd7272fbe45458e31629dd160d23f5f5b8a6806dad3003</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhkVoabZpTzkn-Bgo3urDkuVLIVn6BRtaSHsWY3ucKMiWI8mB_Ptqu8nSHsSMZh69M-Il5JTRNWO0-jjPa6bXlFYNPSIrJgUvuaz0K7KiNOdU6-aYvI3xnlLKBKvekGORk6Zu5Iq015ig9c6PWFxO4J6ijYUfiuvFJVtu_DRhl7AvruwMAacErtjcBT_6uHtxg7djLhY3SxuTTUuyfiq2dsLip58XB7t7fEdeD-Aivn-OJ-T3l8-_Nt_K7Y-v3zeX27KrVJPKlkIHIAG6iskBRYtN39e85kOLlaykRsEUzzWmaM_FIAfZalCaqh56kb96Qj7tdeelHbHv8mIBnJmDHSE8GQ_W_N-Z7J259Y9GMc2oqLPAxbNA8A8LxmRGGzt0Dib0SzScNkLko3hGP-zRLvgYAw6HMYyanStmng3T5q8rmT7_d7MD-2JDBs72wH1MPhz6XElRN0qIP3wRlNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093309362</pqid></control><display><type>article</type><title>Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Chen, Jie ; Wang, Jilin ; Chen, Wei ; Sun, Wenqiang ; Peng, Meng ; Yuan, Zhiyang ; Shen, Shuangqian ; Xie, Kun ; Jin, Cheng ; Sun, Yangyang ; Liu, Xianqing ; Fernie, Alisdair R. ; Yu, Sibin ; Luo, Jie</creator><creatorcontrib>Chen, Jie ; Wang, Jilin ; Chen, Wei ; Sun, Wenqiang ; Peng, Meng ; Yuan, Zhiyang ; Shen, Shuangqian ; Xie, Kun ; Jin, Cheng ; Sun, Yangyang ; Liu, Xianqing ; Fernie, Alisdair R. ; Yu, Sibin ; Luo, Jie</creatorcontrib><description>Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.18.00490</identifier><identifier>PMID: 30139795</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>BIOCHEMISTRY AND METABOLISM ; Chromosomes, Plant - genetics ; Genetic Linkage ; Genetics, Population ; Metabolome ; Metabolomics ; Oryza - genetics ; Oryza - metabolism ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Quantitative Trait Loci - genetics</subject><ispartof>Plant physiology (Bethesda), 2018-10, Vol.178 (2), p.612-625</ispartof><rights>2018 American Society of Plant Biologists</rights><rights>2018 American Society of Plant Biologists. All rights reserved.</rights><rights>2018 American Society of Plant Biologists. All rights reserved. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b0acaa5aac415fe3be9dd7272fbe45458e31629dd160d23f5f5b8a6806dad3003</citedby><orcidid>0000-0002-6282-7244 ; 0000-0001-9000-335X ; 0000-0001-9508-4494 ; 0000-0002-4374-5366 ; 0000-0001-7858-1683 ; 0000-0002-8459-0831 ; 0000-0002-8755-7607 ; 0000-0002-6136-7098 ; 0000-0003-4241-6242 ; 0000-0001-7225-3785 ; 0000-0003-3232-2939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26537963$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26537963$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30139795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wang, Jilin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Sun, Wenqiang</creatorcontrib><creatorcontrib>Peng, Meng</creatorcontrib><creatorcontrib>Yuan, Zhiyang</creatorcontrib><creatorcontrib>Shen, Shuangqian</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Sun, Yangyang</creatorcontrib><creatorcontrib>Liu, Xianqing</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Yu, Sibin</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><title>Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.</description><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Chromosomes, Plant - genetics</subject><subject>Genetic Linkage</subject><subject>Genetics, Population</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Quantitative Trait Loci - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkU1r3DAQhkVoabZpTzkn-Bgo3urDkuVLIVn6BRtaSHsWY3ucKMiWI8mB_Ptqu8nSHsSMZh69M-Il5JTRNWO0-jjPa6bXlFYNPSIrJgUvuaz0K7KiNOdU6-aYvI3xnlLKBKvekGORk6Zu5Iq015ig9c6PWFxO4J6ijYUfiuvFJVtu_DRhl7AvruwMAacErtjcBT_6uHtxg7djLhY3SxuTTUuyfiq2dsLip58XB7t7fEdeD-Aivn-OJ-T3l8-_Nt_K7Y-v3zeX27KrVJPKlkIHIAG6iskBRYtN39e85kOLlaykRsEUzzWmaM_FIAfZalCaqh56kb96Qj7tdeelHbHv8mIBnJmDHSE8GQ_W_N-Z7J259Y9GMc2oqLPAxbNA8A8LxmRGGzt0Dib0SzScNkLko3hGP-zRLvgYAw6HMYyanStmng3T5q8rmT7_d7MD-2JDBs72wH1MPhz6XElRN0qIP3wRlNk</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Chen, Jie</creator><creator>Wang, Jilin</creator><creator>Chen, Wei</creator><creator>Sun, Wenqiang</creator><creator>Peng, Meng</creator><creator>Yuan, Zhiyang</creator><creator>Shen, Shuangqian</creator><creator>Xie, Kun</creator><creator>Jin, Cheng</creator><creator>Sun, Yangyang</creator><creator>Liu, Xianqing</creator><creator>Fernie, Alisdair R.</creator><creator>Yu, Sibin</creator><creator>Luo, Jie</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6282-7244</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><orcidid>https://orcid.org/0000-0001-9508-4494</orcidid><orcidid>https://orcid.org/0000-0002-4374-5366</orcidid><orcidid>https://orcid.org/0000-0001-7858-1683</orcidid><orcidid>https://orcid.org/0000-0002-8459-0831</orcidid><orcidid>https://orcid.org/0000-0002-8755-7607</orcidid><orcidid>https://orcid.org/0000-0002-6136-7098</orcidid><orcidid>https://orcid.org/0000-0003-4241-6242</orcidid><orcidid>https://orcid.org/0000-0001-7225-3785</orcidid><orcidid>https://orcid.org/0000-0003-3232-2939</orcidid></search><sort><creationdate>20181001</creationdate><title>Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations</title><author>Chen, Jie ; Wang, Jilin ; Chen, Wei ; Sun, Wenqiang ; Peng, Meng ; Yuan, Zhiyang ; Shen, Shuangqian ; Xie, Kun ; Jin, Cheng ; Sun, Yangyang ; Liu, Xianqing ; Fernie, Alisdair R. ; Yu, Sibin ; Luo, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b0acaa5aac415fe3be9dd7272fbe45458e31629dd160d23f5f5b8a6806dad3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Chromosomes, Plant - genetics</topic><topic>Genetic Linkage</topic><topic>Genetics, Population</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Quantitative Trait Loci - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wang, Jilin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Sun, Wenqiang</creatorcontrib><creatorcontrib>Peng, Meng</creatorcontrib><creatorcontrib>Yuan, Zhiyang</creatorcontrib><creatorcontrib>Shen, Shuangqian</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Sun, Yangyang</creatorcontrib><creatorcontrib>Liu, Xianqing</creatorcontrib><creatorcontrib>Fernie, Alisdair R.</creatorcontrib><creatorcontrib>Yu, Sibin</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jie</au><au>Wang, Jilin</au><au>Chen, Wei</au><au>Sun, Wenqiang</au><au>Peng, Meng</au><au>Yuan, Zhiyang</au><au>Shen, Shuangqian</au><au>Xie, Kun</au><au>Jin, Cheng</au><au>Sun, Yangyang</au><au>Liu, Xianqing</au><au>Fernie, Alisdair R.</au><au>Yu, Sibin</au><au>Luo, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>178</volume><issue>2</issue><spage>612</spage><epage>625</epage><pages>612-625</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>30139795</pmid><doi>10.1104/pp.18.00490</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6282-7244</orcidid><orcidid>https://orcid.org/0000-0001-9000-335X</orcidid><orcidid>https://orcid.org/0000-0001-9508-4494</orcidid><orcidid>https://orcid.org/0000-0002-4374-5366</orcidid><orcidid>https://orcid.org/0000-0001-7858-1683</orcidid><orcidid>https://orcid.org/0000-0002-8459-0831</orcidid><orcidid>https://orcid.org/0000-0002-8755-7607</orcidid><orcidid>https://orcid.org/0000-0002-6136-7098</orcidid><orcidid>https://orcid.org/0000-0003-4241-6242</orcidid><orcidid>https://orcid.org/0000-0001-7225-3785</orcidid><orcidid>https://orcid.org/0000-0003-3232-2939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2018-10, Vol.178 (2), p.612-625
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_2093309362
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects BIOCHEMISTRY AND METABOLISM
Chromosomes, Plant - genetics
Genetic Linkage
Genetics, Population
Metabolome
Metabolomics
Oryza - genetics
Oryza - metabolism
Plant Leaves - genetics
Plant Leaves - metabolism
Quantitative Trait Loci - genetics
title Metabolome Analysis of Multi-Connected Biparental Chromosome Segment Substitution Line Populations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolome%20Analysis%20of%20Multi-Connected%20Biparental%20Chromosome%20Segment%20Substitution%20Line%20Populations&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Chen,%20Jie&rft.date=2018-10-01&rft.volume=178&rft.issue=2&rft.spage=612&rft.epage=625&rft.pages=612-625&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.18.00490&rft_dat=%3Cjstor_pubme%3E26537963%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-b0acaa5aac415fe3be9dd7272fbe45458e31629dd160d23f5f5b8a6806dad3003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093309362&rft_id=info:pmid/30139795&rft_jstor_id=26537963&rfr_iscdi=true